Phylloclimate or the climate perceived by individual plant organs: What is it? How to model it? What for?

This review introduces the emergence of a new research topic, phylloclimate, located at the crossroads between ecophysiology and canopy microclimate research. Phylloclimate corresponds to the physical environment actually perceived by each individual aerial organ of a plant population, and is descri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2005-06, Vol.166 (3), p.781-790
1. Verfasser: Chelle, Michaël
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 790
container_issue 3
container_start_page 781
container_title The New phytologist
container_volume 166
creator Chelle, Michaël
description This review introduces the emergence of a new research topic, phylloclimate, located at the crossroads between ecophysiology and canopy microclimate research. Phylloclimate corresponds to the physical environment actually perceived by each individual aerial organ of a plant population, and is described by physical variables such as spectral irradiance, temperature, on-leaf water and features of around-organ air (wind speed, temperature, humidity, etc.). Knowing the actual climate in which plant organs grow may enable advances in the understanding of plant-environment interactions, as knowing surface temperature instead of air temperature enabled advances in the study of canopy development. Characterizing phylloclimate variables, using experimental work or modeling, raises many questions such as the choice of suitable space- and time-scale as well as the ability to individualize plant organs within a canopy. This is of particular importance when aiming to link phylloclimate and function-structure plant models. Finally, recent trends and challenging questions in phylloclimate research are discussed, as well as the possible applications of phylloclimate results.
doi_str_mv 10.1111/j.1469-8137.2005.01350.x
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02674939v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3694658</jstor_id><sourcerecordid>3694658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4960-24f800916d926904736d726471777640f343c5be6ee0a24ebf679de1c8378b823</originalsourceid><addsrcrecordid>eNqNUVtv0zAUthCIlY1_gMBPSDwk-BZfkNA0TYwiVWzSNsGb5STO6sqti51267-f05Tyynmxfb6L7fMBADEqca7PixIzrgqJqSgJQlWJMK1Q-fQCTI7ASzBBiMiCM_77BLxJaYEQUhUnr8EJriRXnOEJcDfznfeh8W5pegtDhP3cwr_HtY2NdVvbwnoH3ap1W9dujIdrb1Z9Jj-YVfoCf81ND12Crj-H0_AI-wCXobV-39iDXYjnZ-BVZ3yybw_rKbi_-nZ3OS1m199_XF7MioYpjgrCOpnfiXmrCFeICcpbQTgTWAjBGeooo01VW24tMoTZuuNCtRY3kgpZS0JPwafRd268Xsf8kbjTwTg9vZjpoYcIF0xRtcWZ-3HkrmP4s7Gp10uXGuvz92zYJM2FUFKKgShHYhNDStF2R2eM9BCJXuhh8nqYvB4i0ftI9FOWvj_csamXtv0nPGSQCV9HwqPzdvffxvrnzXTYZf27Ub9IfYhHPeWK8Upm-MMIdyZo8xBd0ve3JJsgjPZFnwF7-qpT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67798871</pqid></control><display><type>article</type><title>Phylloclimate or the climate perceived by individual plant organs: What is it? How to model it? What for?</title><source>Jstor Complete Legacy</source><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>IngentaConnect Open Access Journals</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chelle, Michaël</creator><creatorcontrib>Chelle, Michaël</creatorcontrib><description>This review introduces the emergence of a new research topic, phylloclimate, located at the crossroads between ecophysiology and canopy microclimate research. Phylloclimate corresponds to the physical environment actually perceived by each individual aerial organ of a plant population, and is described by physical variables such as spectral irradiance, temperature, on-leaf water and features of around-organ air (wind speed, temperature, humidity, etc.). Knowing the actual climate in which plant organs grow may enable advances in the understanding of plant-environment interactions, as knowing surface temperature instead of air temperature enabled advances in the study of canopy development. Characterizing phylloclimate variables, using experimental work or modeling, raises many questions such as the choice of suitable space- and time-scale as well as the ability to individualize plant organs within a canopy. This is of particular importance when aiming to link phylloclimate and function-structure plant models. Finally, recent trends and challenging questions in phylloclimate research are discussed, as well as the possible applications of phylloclimate results.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2005.01350.x</identifier><identifier>PMID: 15869641</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science</publisher><subject>Architectural models ; Body temperature ; canopy ; climate change ; Ecological modeling ; Ecophysiology ; Ecosystem ; Forest canopy ; function‐structure ; Life Sciences ; Light ; literature reviews ; measurement ; Microclimate ; Microclimates ; Modeling ; Models, Biological ; phylloclimate ; Phytopathology and phytopharmacy ; Plant Components, Aerial - physiology ; Plants ; Research Reviews ; Three dimensional modeling ; Vegetal Biology ; Vegetation canopies ; Water - metabolism</subject><ispartof>The New phytologist, 2005-06, Vol.166 (3), p.781-790</ispartof><rights>Copyright 2005 New Phytologist</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4960-24f800916d926904736d726471777640f343c5be6ee0a24ebf679de1c8378b823</citedby><cites>FETCH-LOGICAL-c4960-24f800916d926904736d726471777640f343c5be6ee0a24ebf679de1c8378b823</cites><orcidid>0000-0001-8151-1555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3694658$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3694658$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,1411,1427,27901,27902,45550,45551,46384,46808,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15869641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02674939$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chelle, Michaël</creatorcontrib><title>Phylloclimate or the climate perceived by individual plant organs: What is it? How to model it? What for?</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>This review introduces the emergence of a new research topic, phylloclimate, located at the crossroads between ecophysiology and canopy microclimate research. Phylloclimate corresponds to the physical environment actually perceived by each individual aerial organ of a plant population, and is described by physical variables such as spectral irradiance, temperature, on-leaf water and features of around-organ air (wind speed, temperature, humidity, etc.). Knowing the actual climate in which plant organs grow may enable advances in the understanding of plant-environment interactions, as knowing surface temperature instead of air temperature enabled advances in the study of canopy development. Characterizing phylloclimate variables, using experimental work or modeling, raises many questions such as the choice of suitable space- and time-scale as well as the ability to individualize plant organs within a canopy. This is of particular importance when aiming to link phylloclimate and function-structure plant models. Finally, recent trends and challenging questions in phylloclimate research are discussed, as well as the possible applications of phylloclimate results.</description><subject>Architectural models</subject><subject>Body temperature</subject><subject>canopy</subject><subject>climate change</subject><subject>Ecological modeling</subject><subject>Ecophysiology</subject><subject>Ecosystem</subject><subject>Forest canopy</subject><subject>function‐structure</subject><subject>Life Sciences</subject><subject>Light</subject><subject>literature reviews</subject><subject>measurement</subject><subject>Microclimate</subject><subject>Microclimates</subject><subject>Modeling</subject><subject>Models, Biological</subject><subject>phylloclimate</subject><subject>Phytopathology and phytopharmacy</subject><subject>Plant Components, Aerial - physiology</subject><subject>Plants</subject><subject>Research Reviews</subject><subject>Three dimensional modeling</subject><subject>Vegetal Biology</subject><subject>Vegetation canopies</subject><subject>Water - metabolism</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUVtv0zAUthCIlY1_gMBPSDwk-BZfkNA0TYwiVWzSNsGb5STO6sqti51267-f05Tyynmxfb6L7fMBADEqca7PixIzrgqJqSgJQlWJMK1Q-fQCTI7ASzBBiMiCM_77BLxJaYEQUhUnr8EJriRXnOEJcDfznfeh8W5pegtDhP3cwr_HtY2NdVvbwnoH3ap1W9dujIdrb1Z9Jj-YVfoCf81ND12Crj-H0_AI-wCXobV-39iDXYjnZ-BVZ3yybw_rKbi_-nZ3OS1m199_XF7MioYpjgrCOpnfiXmrCFeICcpbQTgTWAjBGeooo01VW24tMoTZuuNCtRY3kgpZS0JPwafRd268Xsf8kbjTwTg9vZjpoYcIF0xRtcWZ-3HkrmP4s7Gp10uXGuvz92zYJM2FUFKKgShHYhNDStF2R2eM9BCJXuhh8nqYvB4i0ftI9FOWvj_csamXtv0nPGSQCV9HwqPzdvffxvrnzXTYZf27Ub9IfYhHPeWK8Upm-MMIdyZo8xBd0ve3JJsgjPZFnwF7-qpT</recordid><startdate>200506</startdate><enddate>200506</enddate><creator>Chelle, Michaël</creator><general>Blackwell Science</general><general>Blackwell Science Ltd</general><general>Wiley</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8151-1555</orcidid></search><sort><creationdate>200506</creationdate><title>Phylloclimate or the climate perceived by individual plant organs: What is it? How to model it? What for?</title><author>Chelle, Michaël</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4960-24f800916d926904736d726471777640f343c5be6ee0a24ebf679de1c8378b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Architectural models</topic><topic>Body temperature</topic><topic>canopy</topic><topic>climate change</topic><topic>Ecological modeling</topic><topic>Ecophysiology</topic><topic>Ecosystem</topic><topic>Forest canopy</topic><topic>function‐structure</topic><topic>Life Sciences</topic><topic>Light</topic><topic>literature reviews</topic><topic>measurement</topic><topic>Microclimate</topic><topic>Microclimates</topic><topic>Modeling</topic><topic>Models, Biological</topic><topic>phylloclimate</topic><topic>Phytopathology and phytopharmacy</topic><topic>Plant Components, Aerial - physiology</topic><topic>Plants</topic><topic>Research Reviews</topic><topic>Three dimensional modeling</topic><topic>Vegetal Biology</topic><topic>Vegetation canopies</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chelle, Michaël</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chelle, Michaël</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phylloclimate or the climate perceived by individual plant organs: What is it? How to model it? What for?</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2005-06</date><risdate>2005</risdate><volume>166</volume><issue>3</issue><spage>781</spage><epage>790</epage><pages>781-790</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>This review introduces the emergence of a new research topic, phylloclimate, located at the crossroads between ecophysiology and canopy microclimate research. Phylloclimate corresponds to the physical environment actually perceived by each individual aerial organ of a plant population, and is described by physical variables such as spectral irradiance, temperature, on-leaf water and features of around-organ air (wind speed, temperature, humidity, etc.). Knowing the actual climate in which plant organs grow may enable advances in the understanding of plant-environment interactions, as knowing surface temperature instead of air temperature enabled advances in the study of canopy development. Characterizing phylloclimate variables, using experimental work or modeling, raises many questions such as the choice of suitable space- and time-scale as well as the ability to individualize plant organs within a canopy. This is of particular importance when aiming to link phylloclimate and function-structure plant models. Finally, recent trends and challenging questions in phylloclimate research are discussed, as well as the possible applications of phylloclimate results.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science</pub><pmid>15869641</pmid><doi>10.1111/j.1469-8137.2005.01350.x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8151-1555</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2005-06, Vol.166 (3), p.781-790
issn 0028-646X
1469-8137
language eng
recordid cdi_hal_primary_oai_HAL_hal_02674939v1
source Jstor Complete Legacy; Wiley Online Library - AutoHoldings Journals; MEDLINE; IngentaConnect Open Access Journals; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects Architectural models
Body temperature
canopy
climate change
Ecological modeling
Ecophysiology
Ecosystem
Forest canopy
function‐structure
Life Sciences
Light
literature reviews
measurement
Microclimate
Microclimates
Modeling
Models, Biological
phylloclimate
Phytopathology and phytopharmacy
Plant Components, Aerial - physiology
Plants
Research Reviews
Three dimensional modeling
Vegetal Biology
Vegetation canopies
Water - metabolism
title Phylloclimate or the climate perceived by individual plant organs: What is it? How to model it? What for?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A12%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phylloclimate%20or%20the%20climate%20perceived%20by%20individual%20plant%20organs:%20What%20is%20it?%20How%20to%20model%20it?%20What%20for?&rft.jtitle=The%20New%20phytologist&rft.au=Chelle,%20Micha%C3%ABl&rft.date=2005-06&rft.volume=166&rft.issue=3&rft.spage=781&rft.epage=790&rft.pages=781-790&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/j.1469-8137.2005.01350.x&rft_dat=%3Cjstor_hal_p%3E3694658%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67798871&rft_id=info:pmid/15869641&rft_jstor_id=3694658&rfr_iscdi=true