Pretreatment methods to improve sludge anaerobic degradability: A review

This paper presents a review of the main sludge treatment techniques used as a pretreatment to anaerobic digestion. These processes include biological (largely thermal phased anaerobic), thermal hydrolysis, mechanical (such as ultrasound, high pressure and lysis), chemical with oxidation (mainly ozo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2010-11, Vol.183 (1), p.1-15
Hauptverfasser: Carrère, H., Dumas, C., Battimelli, A., Batstone, D.J., Delgenès, J.P., Steyer, J.P., Ferrer, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 1
container_title Journal of hazardous materials
container_volume 183
creator Carrère, H.
Dumas, C.
Battimelli, A.
Batstone, D.J.
Delgenès, J.P.
Steyer, J.P.
Ferrer, I.
description This paper presents a review of the main sludge treatment techniques used as a pretreatment to anaerobic digestion. These processes include biological (largely thermal phased anaerobic), thermal hydrolysis, mechanical (such as ultrasound, high pressure and lysis), chemical with oxidation (mainly ozonation), and alkali treatments. The first three are the most widespread. Emphasis is put on their impact on the resulting sludge properties, on the potential biogas (renewable energy) production and on their application at industrial scale. Thermal biological provides a moderate performance increase over mesophilic digestion, with moderate energetic input. Mechanical treatment methods are comparable, and provide moderate performance improvements with moderate electrical input. Thermal hydrolysis provides substantial performance increases, with a substantial consumption of thermal energy. It is likely that low impact pretreatment methods such as mechanical and thermal phased improve speed of degradation, while high impact methods such as thermal hydrolysis or oxidation improve both speed and extent of degradation. While increased nutrient release can be a substantial cost in enhanced sludge destruction, it also offers opportunities to recover nutrients from a concentrated water stream as mineral fertiliser.
doi_str_mv 10.1016/j.jhazmat.2010.06.129
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02667877v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389410008824</els_id><sourcerecordid>1770320572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-652acb17419c56ddebf44c28498a79f27d3d5d3a1595b220c015fd97f82d71ff3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi1ERdPATwDtBVEOG8Zf691eUFQBQYoEBzhbXnu2cbQfxXZSlV9fRwnl1p5GGj0z844eQt5SWFCg1aftYrsxfweTFgxyD6oFZc0LMqO14iXnvHpJZsBBlLxuxDm5iHELAFRJ8YqcM1BQZ2hGVj8DpoAmDTimYsC0mVws0lT44TZMeyxiv3M3WJjRYJhabwuHN8E40_rep_urYlkE3Hu8e03OOtNHfHOqc_L765df16ty_ePb9-vlurQVQCoryYxtqRK0sbJyDttOCMtq0dRGNR1TjjvpuKGykS1jYIHKzjWqq5lTtOv4nHw87t2YXt8GP5hwryfj9Wq51ocesKpStVJ7mtkPRza_8meHMenBR4t9b0acdlFnjHEqhXielAJAcakyefkkSZUCzkDmzXMij6gNU4wBu8e8FPRBot7qk0R9kKih0llinnt3OrFrB3SPU_-sZeD9CTDRmr4LZrQ-_uc4z1nF4f_PRw6zkCwp6Gg9jhadD2iTdpN_JsoDERS7Ow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770320572</pqid></control><display><type>article</type><title>Pretreatment methods to improve sludge anaerobic degradability: A review</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Carrère, H. ; Dumas, C. ; Battimelli, A. ; Batstone, D.J. ; Delgenès, J.P. ; Steyer, J.P. ; Ferrer, I.</creator><creatorcontrib>Carrère, H. ; Dumas, C. ; Battimelli, A. ; Batstone, D.J. ; Delgenès, J.P. ; Steyer, J.P. ; Ferrer, I.</creatorcontrib><description>This paper presents a review of the main sludge treatment techniques used as a pretreatment to anaerobic digestion. These processes include biological (largely thermal phased anaerobic), thermal hydrolysis, mechanical (such as ultrasound, high pressure and lysis), chemical with oxidation (mainly ozonation), and alkali treatments. The first three are the most widespread. Emphasis is put on their impact on the resulting sludge properties, on the potential biogas (renewable energy) production and on their application at industrial scale. Thermal biological provides a moderate performance increase over mesophilic digestion, with moderate energetic input. Mechanical treatment methods are comparable, and provide moderate performance improvements with moderate electrical input. Thermal hydrolysis provides substantial performance increases, with a substantial consumption of thermal energy. It is likely that low impact pretreatment methods such as mechanical and thermal phased improve speed of degradation, while high impact methods such as thermal hydrolysis or oxidation improve both speed and extent of degradation. While increased nutrient release can be a substantial cost in enhanced sludge destruction, it also offers opportunities to recover nutrients from a concentrated water stream as mineral fertiliser.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2010.06.129</identifier><identifier>PMID: 20708333</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Activated sludge ; Anaerobic processes ; Anaerobic treatment ; Anaerobiosis ; Applied sciences ; Biodegradation, Environmental ; Biogas ; Biological ; Biological and medical sciences ; Biosolids ; Biotechnology ; Chemical engineering ; Continental surface waters ; Degradation ; Environmental Sciences ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Hot Temperature ; Hydrolysis ; Life Sciences ; Methane ; Methods ; Methods. Procedures. Technologies ; Natural water pollution ; Nutrients ; Other industrial wastes. Sewage sludge ; Others ; Oxidation ; Pollution ; Pretreatment ; Reactors ; Renewable energy ; Sewage - microbiology ; Sludge ; Various methods and equipments ; Wastes ; Water treatment and pollution</subject><ispartof>Journal of hazardous materials, 2010-11, Vol.183 (1), p.1-15</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-652acb17419c56ddebf44c28498a79f27d3d5d3a1595b220c015fd97f82d71ff3</citedby><cites>FETCH-LOGICAL-c600t-652acb17419c56ddebf44c28498a79f27d3d5d3a1595b220c015fd97f82d71ff3</cites><orcidid>0000-0002-4891-1255 ; 0000-0001-5415-9664 ; 0000-0002-1224-6054 ; 0000-0003-0467-8081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304389410008824$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23307341$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20708333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02667877$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Carrère, H.</creatorcontrib><creatorcontrib>Dumas, C.</creatorcontrib><creatorcontrib>Battimelli, A.</creatorcontrib><creatorcontrib>Batstone, D.J.</creatorcontrib><creatorcontrib>Delgenès, J.P.</creatorcontrib><creatorcontrib>Steyer, J.P.</creatorcontrib><creatorcontrib>Ferrer, I.</creatorcontrib><title>Pretreatment methods to improve sludge anaerobic degradability: A review</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>This paper presents a review of the main sludge treatment techniques used as a pretreatment to anaerobic digestion. These processes include biological (largely thermal phased anaerobic), thermal hydrolysis, mechanical (such as ultrasound, high pressure and lysis), chemical with oxidation (mainly ozonation), and alkali treatments. The first three are the most widespread. Emphasis is put on their impact on the resulting sludge properties, on the potential biogas (renewable energy) production and on their application at industrial scale. Thermal biological provides a moderate performance increase over mesophilic digestion, with moderate energetic input. Mechanical treatment methods are comparable, and provide moderate performance improvements with moderate electrical input. Thermal hydrolysis provides substantial performance increases, with a substantial consumption of thermal energy. It is likely that low impact pretreatment methods such as mechanical and thermal phased improve speed of degradation, while high impact methods such as thermal hydrolysis or oxidation improve both speed and extent of degradation. While increased nutrient release can be a substantial cost in enhanced sludge destruction, it also offers opportunities to recover nutrients from a concentrated water stream as mineral fertiliser.</description><subject>Activated sludge</subject><subject>Anaerobic processes</subject><subject>Anaerobic treatment</subject><subject>Anaerobiosis</subject><subject>Applied sciences</subject><subject>Biodegradation, Environmental</subject><subject>Biogas</subject><subject>Biological</subject><subject>Biological and medical sciences</subject><subject>Biosolids</subject><subject>Biotechnology</subject><subject>Chemical engineering</subject><subject>Continental surface waters</subject><subject>Degradation</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hot Temperature</subject><subject>Hydrolysis</subject><subject>Life Sciences</subject><subject>Methane</subject><subject>Methods</subject><subject>Methods. Procedures. Technologies</subject><subject>Natural water pollution</subject><subject>Nutrients</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>Others</subject><subject>Oxidation</subject><subject>Pollution</subject><subject>Pretreatment</subject><subject>Reactors</subject><subject>Renewable energy</subject><subject>Sewage - microbiology</subject><subject>Sludge</subject><subject>Various methods and equipments</subject><subject>Wastes</subject><subject>Water treatment and pollution</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhi1ERdPATwDtBVEOG8Zf691eUFQBQYoEBzhbXnu2cbQfxXZSlV9fRwnl1p5GGj0z844eQt5SWFCg1aftYrsxfweTFgxyD6oFZc0LMqO14iXnvHpJZsBBlLxuxDm5iHELAFRJ8YqcM1BQZ2hGVj8DpoAmDTimYsC0mVws0lT44TZMeyxiv3M3WJjRYJhabwuHN8E40_rep_urYlkE3Hu8e03OOtNHfHOqc_L765df16ty_ePb9-vlurQVQCoryYxtqRK0sbJyDttOCMtq0dRGNR1TjjvpuKGykS1jYIHKzjWqq5lTtOv4nHw87t2YXt8GP5hwryfj9Wq51ocesKpStVJ7mtkPRza_8meHMenBR4t9b0acdlFnjHEqhXielAJAcakyefkkSZUCzkDmzXMij6gNU4wBu8e8FPRBot7qk0R9kKih0llinnt3OrFrB3SPU_-sZeD9CTDRmr4LZrQ-_uc4z1nF4f_PRw6zkCwp6Gg9jhadD2iTdpN_JsoDERS7Ow</recordid><startdate>20101115</startdate><enddate>20101115</enddate><creator>Carrère, H.</creator><creator>Dumas, C.</creator><creator>Battimelli, A.</creator><creator>Batstone, D.J.</creator><creator>Delgenès, J.P.</creator><creator>Steyer, J.P.</creator><creator>Ferrer, I.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7SU</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7ST</scope><scope>7U7</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4891-1255</orcidid><orcidid>https://orcid.org/0000-0001-5415-9664</orcidid><orcidid>https://orcid.org/0000-0002-1224-6054</orcidid><orcidid>https://orcid.org/0000-0003-0467-8081</orcidid></search><sort><creationdate>20101115</creationdate><title>Pretreatment methods to improve sludge anaerobic degradability: A review</title><author>Carrère, H. ; Dumas, C. ; Battimelli, A. ; Batstone, D.J. ; Delgenès, J.P. ; Steyer, J.P. ; Ferrer, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-652acb17419c56ddebf44c28498a79f27d3d5d3a1595b220c015fd97f82d71ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Activated sludge</topic><topic>Anaerobic processes</topic><topic>Anaerobic treatment</topic><topic>Anaerobiosis</topic><topic>Applied sciences</topic><topic>Biodegradation, Environmental</topic><topic>Biogas</topic><topic>Biological</topic><topic>Biological and medical sciences</topic><topic>Biosolids</topic><topic>Biotechnology</topic><topic>Chemical engineering</topic><topic>Continental surface waters</topic><topic>Degradation</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hot Temperature</topic><topic>Hydrolysis</topic><topic>Life Sciences</topic><topic>Methane</topic><topic>Methods</topic><topic>Methods. Procedures. Technologies</topic><topic>Natural water pollution</topic><topic>Nutrients</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>Others</topic><topic>Oxidation</topic><topic>Pollution</topic><topic>Pretreatment</topic><topic>Reactors</topic><topic>Renewable energy</topic><topic>Sewage - microbiology</topic><topic>Sludge</topic><topic>Various methods and equipments</topic><topic>Wastes</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrère, H.</creatorcontrib><creatorcontrib>Dumas, C.</creatorcontrib><creatorcontrib>Battimelli, A.</creatorcontrib><creatorcontrib>Batstone, D.J.</creatorcontrib><creatorcontrib>Delgenès, J.P.</creatorcontrib><creatorcontrib>Steyer, J.P.</creatorcontrib><creatorcontrib>Ferrer, I.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrère, H.</au><au>Dumas, C.</au><au>Battimelli, A.</au><au>Batstone, D.J.</au><au>Delgenès, J.P.</au><au>Steyer, J.P.</au><au>Ferrer, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pretreatment methods to improve sludge anaerobic degradability: A review</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2010-11-15</date><risdate>2010</risdate><volume>183</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>This paper presents a review of the main sludge treatment techniques used as a pretreatment to anaerobic digestion. These processes include biological (largely thermal phased anaerobic), thermal hydrolysis, mechanical (such as ultrasound, high pressure and lysis), chemical with oxidation (mainly ozonation), and alkali treatments. The first three are the most widespread. Emphasis is put on their impact on the resulting sludge properties, on the potential biogas (renewable energy) production and on their application at industrial scale. Thermal biological provides a moderate performance increase over mesophilic digestion, with moderate energetic input. Mechanical treatment methods are comparable, and provide moderate performance improvements with moderate electrical input. Thermal hydrolysis provides substantial performance increases, with a substantial consumption of thermal energy. It is likely that low impact pretreatment methods such as mechanical and thermal phased improve speed of degradation, while high impact methods such as thermal hydrolysis or oxidation improve both speed and extent of degradation. While increased nutrient release can be a substantial cost in enhanced sludge destruction, it also offers opportunities to recover nutrients from a concentrated water stream as mineral fertiliser.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>20708333</pmid><doi>10.1016/j.jhazmat.2010.06.129</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4891-1255</orcidid><orcidid>https://orcid.org/0000-0001-5415-9664</orcidid><orcidid>https://orcid.org/0000-0002-1224-6054</orcidid><orcidid>https://orcid.org/0000-0003-0467-8081</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2010-11, Vol.183 (1), p.1-15
issn 0304-3894
1873-3336
language eng
recordid cdi_hal_primary_oai_HAL_hal_02667877v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Activated sludge
Anaerobic processes
Anaerobic treatment
Anaerobiosis
Applied sciences
Biodegradation, Environmental
Biogas
Biological
Biological and medical sciences
Biosolids
Biotechnology
Chemical engineering
Continental surface waters
Degradation
Environmental Sciences
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Hot Temperature
Hydrolysis
Life Sciences
Methane
Methods
Methods. Procedures. Technologies
Natural water pollution
Nutrients
Other industrial wastes. Sewage sludge
Others
Oxidation
Pollution
Pretreatment
Reactors
Renewable energy
Sewage - microbiology
Sludge
Various methods and equipments
Wastes
Water treatment and pollution
title Pretreatment methods to improve sludge anaerobic degradability: A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pretreatment%20methods%20to%20improve%20sludge%20anaerobic%20degradability:%20A%20review&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Carr%C3%A8re,%20H.&rft.date=2010-11-15&rft.volume=183&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2010.06.129&rft_dat=%3Cproquest_hal_p%3E1770320572%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770320572&rft_id=info:pmid/20708333&rft_els_id=S0304389410008824&rfr_iscdi=true