Pretreatment methods to improve sludge anaerobic degradability: A review
This paper presents a review of the main sludge treatment techniques used as a pretreatment to anaerobic digestion. These processes include biological (largely thermal phased anaerobic), thermal hydrolysis, mechanical (such as ultrasound, high pressure and lysis), chemical with oxidation (mainly ozo...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2010-11, Vol.183 (1), p.1-15 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of hazardous materials |
container_volume | 183 |
creator | Carrère, H. Dumas, C. Battimelli, A. Batstone, D.J. Delgenès, J.P. Steyer, J.P. Ferrer, I. |
description | This paper presents a review of the main sludge treatment techniques used as a pretreatment to anaerobic digestion. These processes include biological (largely thermal phased anaerobic), thermal hydrolysis, mechanical (such as ultrasound, high pressure and lysis), chemical with oxidation (mainly ozonation), and alkali treatments. The first three are the most widespread. Emphasis is put on their impact on the resulting sludge properties, on the potential biogas (renewable energy) production and on their application at industrial scale. Thermal biological provides a moderate performance increase over mesophilic digestion, with moderate energetic input. Mechanical treatment methods are comparable, and provide moderate performance improvements with moderate electrical input. Thermal hydrolysis provides substantial performance increases, with a substantial consumption of thermal energy. It is likely that low impact pretreatment methods such as mechanical and thermal phased improve speed of degradation, while high impact methods such as thermal hydrolysis or oxidation improve both speed and extent of degradation. While increased nutrient release can be a substantial cost in enhanced sludge destruction, it also offers opportunities to recover nutrients from a concentrated water stream as mineral fertiliser. |
doi_str_mv | 10.1016/j.jhazmat.2010.06.129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02667877v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389410008824</els_id><sourcerecordid>1770320572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-652acb17419c56ddebf44c28498a79f27d3d5d3a1595b220c015fd97f82d71ff3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi1ERdPATwDtBVEOG8Zf691eUFQBQYoEBzhbXnu2cbQfxXZSlV9fRwnl1p5GGj0z844eQt5SWFCg1aftYrsxfweTFgxyD6oFZc0LMqO14iXnvHpJZsBBlLxuxDm5iHELAFRJ8YqcM1BQZ2hGVj8DpoAmDTimYsC0mVws0lT44TZMeyxiv3M3WJjRYJhabwuHN8E40_rep_urYlkE3Hu8e03OOtNHfHOqc_L765df16ty_ePb9-vlurQVQCoryYxtqRK0sbJyDttOCMtq0dRGNR1TjjvpuKGykS1jYIHKzjWqq5lTtOv4nHw87t2YXt8GP5hwryfj9Wq51ocesKpStVJ7mtkPRza_8meHMenBR4t9b0acdlFnjHEqhXielAJAcakyefkkSZUCzkDmzXMij6gNU4wBu8e8FPRBot7qk0R9kKih0llinnt3OrFrB3SPU_-sZeD9CTDRmr4LZrQ-_uc4z1nF4f_PRw6zkCwp6Gg9jhadD2iTdpN_JsoDERS7Ow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770320572</pqid></control><display><type>article</type><title>Pretreatment methods to improve sludge anaerobic degradability: A review</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Carrère, H. ; Dumas, C. ; Battimelli, A. ; Batstone, D.J. ; Delgenès, J.P. ; Steyer, J.P. ; Ferrer, I.</creator><creatorcontrib>Carrère, H. ; Dumas, C. ; Battimelli, A. ; Batstone, D.J. ; Delgenès, J.P. ; Steyer, J.P. ; Ferrer, I.</creatorcontrib><description>This paper presents a review of the main sludge treatment techniques used as a pretreatment to anaerobic digestion. These processes include biological (largely thermal phased anaerobic), thermal hydrolysis, mechanical (such as ultrasound, high pressure and lysis), chemical with oxidation (mainly ozonation), and alkali treatments. The first three are the most widespread. Emphasis is put on their impact on the resulting sludge properties, on the potential biogas (renewable energy) production and on their application at industrial scale. Thermal biological provides a moderate performance increase over mesophilic digestion, with moderate energetic input. Mechanical treatment methods are comparable, and provide moderate performance improvements with moderate electrical input. Thermal hydrolysis provides substantial performance increases, with a substantial consumption of thermal energy. It is likely that low impact pretreatment methods such as mechanical and thermal phased improve speed of degradation, while high impact methods such as thermal hydrolysis or oxidation improve both speed and extent of degradation. While increased nutrient release can be a substantial cost in enhanced sludge destruction, it also offers opportunities to recover nutrients from a concentrated water stream as mineral fertiliser.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2010.06.129</identifier><identifier>PMID: 20708333</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Activated sludge ; Anaerobic processes ; Anaerobic treatment ; Anaerobiosis ; Applied sciences ; Biodegradation, Environmental ; Biogas ; Biological ; Biological and medical sciences ; Biosolids ; Biotechnology ; Chemical engineering ; Continental surface waters ; Degradation ; Environmental Sciences ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Hot Temperature ; Hydrolysis ; Life Sciences ; Methane ; Methods ; Methods. Procedures. Technologies ; Natural water pollution ; Nutrients ; Other industrial wastes. Sewage sludge ; Others ; Oxidation ; Pollution ; Pretreatment ; Reactors ; Renewable energy ; Sewage - microbiology ; Sludge ; Various methods and equipments ; Wastes ; Water treatment and pollution</subject><ispartof>Journal of hazardous materials, 2010-11, Vol.183 (1), p.1-15</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-652acb17419c56ddebf44c28498a79f27d3d5d3a1595b220c015fd97f82d71ff3</citedby><cites>FETCH-LOGICAL-c600t-652acb17419c56ddebf44c28498a79f27d3d5d3a1595b220c015fd97f82d71ff3</cites><orcidid>0000-0002-4891-1255 ; 0000-0001-5415-9664 ; 0000-0002-1224-6054 ; 0000-0003-0467-8081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304389410008824$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23307341$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20708333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02667877$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Carrère, H.</creatorcontrib><creatorcontrib>Dumas, C.</creatorcontrib><creatorcontrib>Battimelli, A.</creatorcontrib><creatorcontrib>Batstone, D.J.</creatorcontrib><creatorcontrib>Delgenès, J.P.</creatorcontrib><creatorcontrib>Steyer, J.P.</creatorcontrib><creatorcontrib>Ferrer, I.</creatorcontrib><title>Pretreatment methods to improve sludge anaerobic degradability: A review</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>This paper presents a review of the main sludge treatment techniques used as a pretreatment to anaerobic digestion. These processes include biological (largely thermal phased anaerobic), thermal hydrolysis, mechanical (such as ultrasound, high pressure and lysis), chemical with oxidation (mainly ozonation), and alkali treatments. The first three are the most widespread. Emphasis is put on their impact on the resulting sludge properties, on the potential biogas (renewable energy) production and on their application at industrial scale. Thermal biological provides a moderate performance increase over mesophilic digestion, with moderate energetic input. Mechanical treatment methods are comparable, and provide moderate performance improvements with moderate electrical input. Thermal hydrolysis provides substantial performance increases, with a substantial consumption of thermal energy. It is likely that low impact pretreatment methods such as mechanical and thermal phased improve speed of degradation, while high impact methods such as thermal hydrolysis or oxidation improve both speed and extent of degradation. While increased nutrient release can be a substantial cost in enhanced sludge destruction, it also offers opportunities to recover nutrients from a concentrated water stream as mineral fertiliser.</description><subject>Activated sludge</subject><subject>Anaerobic processes</subject><subject>Anaerobic treatment</subject><subject>Anaerobiosis</subject><subject>Applied sciences</subject><subject>Biodegradation, Environmental</subject><subject>Biogas</subject><subject>Biological</subject><subject>Biological and medical sciences</subject><subject>Biosolids</subject><subject>Biotechnology</subject><subject>Chemical engineering</subject><subject>Continental surface waters</subject><subject>Degradation</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hot Temperature</subject><subject>Hydrolysis</subject><subject>Life Sciences</subject><subject>Methane</subject><subject>Methods</subject><subject>Methods. Procedures. Technologies</subject><subject>Natural water pollution</subject><subject>Nutrients</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>Others</subject><subject>Oxidation</subject><subject>Pollution</subject><subject>Pretreatment</subject><subject>Reactors</subject><subject>Renewable energy</subject><subject>Sewage - microbiology</subject><subject>Sludge</subject><subject>Various methods and equipments</subject><subject>Wastes</subject><subject>Water treatment and pollution</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhi1ERdPATwDtBVEOG8Zf691eUFQBQYoEBzhbXnu2cbQfxXZSlV9fRwnl1p5GGj0z844eQt5SWFCg1aftYrsxfweTFgxyD6oFZc0LMqO14iXnvHpJZsBBlLxuxDm5iHELAFRJ8YqcM1BQZ2hGVj8DpoAmDTimYsC0mVws0lT44TZMeyxiv3M3WJjRYJhabwuHN8E40_rep_urYlkE3Hu8e03OOtNHfHOqc_L765df16ty_ePb9-vlurQVQCoryYxtqRK0sbJyDttOCMtq0dRGNR1TjjvpuKGykS1jYIHKzjWqq5lTtOv4nHw87t2YXt8GP5hwryfj9Wq51ocesKpStVJ7mtkPRza_8meHMenBR4t9b0acdlFnjHEqhXielAJAcakyefkkSZUCzkDmzXMij6gNU4wBu8e8FPRBot7qk0R9kKih0llinnt3OrFrB3SPU_-sZeD9CTDRmr4LZrQ-_uc4z1nF4f_PRw6zkCwp6Gg9jhadD2iTdpN_JsoDERS7Ow</recordid><startdate>20101115</startdate><enddate>20101115</enddate><creator>Carrère, H.</creator><creator>Dumas, C.</creator><creator>Battimelli, A.</creator><creator>Batstone, D.J.</creator><creator>Delgenès, J.P.</creator><creator>Steyer, J.P.</creator><creator>Ferrer, I.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7SU</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>7X8</scope><scope>7ST</scope><scope>7U7</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4891-1255</orcidid><orcidid>https://orcid.org/0000-0001-5415-9664</orcidid><orcidid>https://orcid.org/0000-0002-1224-6054</orcidid><orcidid>https://orcid.org/0000-0003-0467-8081</orcidid></search><sort><creationdate>20101115</creationdate><title>Pretreatment methods to improve sludge anaerobic degradability: A review</title><author>Carrère, H. ; Dumas, C. ; Battimelli, A. ; Batstone, D.J. ; Delgenès, J.P. ; Steyer, J.P. ; Ferrer, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-652acb17419c56ddebf44c28498a79f27d3d5d3a1595b220c015fd97f82d71ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Activated sludge</topic><topic>Anaerobic processes</topic><topic>Anaerobic treatment</topic><topic>Anaerobiosis</topic><topic>Applied sciences</topic><topic>Biodegradation, Environmental</topic><topic>Biogas</topic><topic>Biological</topic><topic>Biological and medical sciences</topic><topic>Biosolids</topic><topic>Biotechnology</topic><topic>Chemical engineering</topic><topic>Continental surface waters</topic><topic>Degradation</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hot Temperature</topic><topic>Hydrolysis</topic><topic>Life Sciences</topic><topic>Methane</topic><topic>Methods</topic><topic>Methods. Procedures. Technologies</topic><topic>Natural water pollution</topic><topic>Nutrients</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>Others</topic><topic>Oxidation</topic><topic>Pollution</topic><topic>Pretreatment</topic><topic>Reactors</topic><topic>Renewable energy</topic><topic>Sewage - microbiology</topic><topic>Sludge</topic><topic>Various methods and equipments</topic><topic>Wastes</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrère, H.</creatorcontrib><creatorcontrib>Dumas, C.</creatorcontrib><creatorcontrib>Battimelli, A.</creatorcontrib><creatorcontrib>Batstone, D.J.</creatorcontrib><creatorcontrib>Delgenès, J.P.</creatorcontrib><creatorcontrib>Steyer, J.P.</creatorcontrib><creatorcontrib>Ferrer, I.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrère, H.</au><au>Dumas, C.</au><au>Battimelli, A.</au><au>Batstone, D.J.</au><au>Delgenès, J.P.</au><au>Steyer, J.P.</au><au>Ferrer, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pretreatment methods to improve sludge anaerobic degradability: A review</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2010-11-15</date><risdate>2010</risdate><volume>183</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>This paper presents a review of the main sludge treatment techniques used as a pretreatment to anaerobic digestion. These processes include biological (largely thermal phased anaerobic), thermal hydrolysis, mechanical (such as ultrasound, high pressure and lysis), chemical with oxidation (mainly ozonation), and alkali treatments. The first three are the most widespread. Emphasis is put on their impact on the resulting sludge properties, on the potential biogas (renewable energy) production and on their application at industrial scale. Thermal biological provides a moderate performance increase over mesophilic digestion, with moderate energetic input. Mechanical treatment methods are comparable, and provide moderate performance improvements with moderate electrical input. Thermal hydrolysis provides substantial performance increases, with a substantial consumption of thermal energy. It is likely that low impact pretreatment methods such as mechanical and thermal phased improve speed of degradation, while high impact methods such as thermal hydrolysis or oxidation improve both speed and extent of degradation. While increased nutrient release can be a substantial cost in enhanced sludge destruction, it also offers opportunities to recover nutrients from a concentrated water stream as mineral fertiliser.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>20708333</pmid><doi>10.1016/j.jhazmat.2010.06.129</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4891-1255</orcidid><orcidid>https://orcid.org/0000-0001-5415-9664</orcidid><orcidid>https://orcid.org/0000-0002-1224-6054</orcidid><orcidid>https://orcid.org/0000-0003-0467-8081</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-3894 |
ispartof | Journal of hazardous materials, 2010-11, Vol.183 (1), p.1-15 |
issn | 0304-3894 1873-3336 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02667877v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Activated sludge Anaerobic processes Anaerobic treatment Anaerobiosis Applied sciences Biodegradation, Environmental Biogas Biological Biological and medical sciences Biosolids Biotechnology Chemical engineering Continental surface waters Degradation Environmental Sciences Exact sciences and technology Fundamental and applied biological sciences. Psychology Hot Temperature Hydrolysis Life Sciences Methane Methods Methods. Procedures. Technologies Natural water pollution Nutrients Other industrial wastes. Sewage sludge Others Oxidation Pollution Pretreatment Reactors Renewable energy Sewage - microbiology Sludge Various methods and equipments Wastes Water treatment and pollution |
title | Pretreatment methods to improve sludge anaerobic degradability: A review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A21%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pretreatment%20methods%20to%20improve%20sludge%20anaerobic%20degradability:%20A%20review&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Carr%C3%A8re,%20H.&rft.date=2010-11-15&rft.volume=183&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2010.06.129&rft_dat=%3Cproquest_hal_p%3E1770320572%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1770320572&rft_id=info:pmid/20708333&rft_els_id=S0304389410008824&rfr_iscdi=true |