Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding

Since the 1960s, there has been very little diversification of oil palm (Elaeis guineensis) seed production, with mainly Deli x La Mé and Deli x Congo type crosses. The Deli origin, which was introduced from Africa into Indonesia in 1848, is unavoidable in breeding. In order to understand the comple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tree genetics & genomes 2009-07, Vol.5 (3), p.493-504
Hauptverfasser: Cochard, Benoît, Adon, Benjamin, Rekima, Samah, Billotte, Norbert, de Chenon, Roch Desmier, Koutou, Anatole, Nouy, Bruno, Omoré, Alphonse, Purba, Abdul Razak, Glazsmann, Jean-Christophe, Noyer, Jean-Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 504
container_issue 3
container_start_page 493
container_title Tree genetics & genomes
container_volume 5
creator Cochard, Benoît
Adon, Benjamin
Rekima, Samah
Billotte, Norbert
de Chenon, Roch Desmier
Koutou, Anatole
Nouy, Bruno
Omoré, Alphonse
Purba, Abdul Razak
Glazsmann, Jean-Christophe
Noyer, Jean-Louis
description Since the 1960s, there has been very little diversification of oil palm (Elaeis guineensis) seed production, with mainly Deli x La Mé and Deli x Congo type crosses. The Deli origin, which was introduced from Africa into Indonesia in 1848, is unavoidable in breeding. In order to understand the complementarity between the Africa and “Asia” origins, and to diversify the genetic base of oil palm production, the structure of the genetic resources involved in the history of oil palm breeding in relation to African germplasm including subspontaneous populations needs to be understood. In this study, 318 individuals from 26 origins and eight countries were analysed with 14 microsatellite loci. Descriptive and Bayesian analyses of oil palm genetic diversity (Principal Coordinates Analysis, Neighbour-Joining Tree and Structure software) revealed two original groups which reflected the discontinuity of African species at the Dahomey Gap, West Africa (Group I) on the one hand, and “Benin-Nigeria-Cameroon-Congo-Angola” (Group II) on the other hand. The Deli group (Group III), derived from group II, is the result of artificial selection (mass selection). The genetic structuring revealed showed the positive contribution of the within-population mass selection practiced in the Deli population, and explains the success of Deli x La Mé and Deli x Congo crosses. A selection strategy is proposed, based on the yet-to-be-exploited complementarity that exists between the two African genetic groups and on within-group improvement. We suggest (Deli x Group II) x Group I crosses, so that group II benefits from the quality of the Deli origin.
doi_str_mv 10.1007/s11295-009-0203-3
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02667218v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20072272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-33c76949e4c5b465a4f3ea2dee98a3ae952a38469fa4198347a1bc1d4bff70c3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEEqXwAThhcQD1EBj_iRMfVxW0SCtxoJytiTPJusrGwU5a9dvjVVArcehpRqPfG72ZVxTvOXzhAPXXxLkwVQlgShAgS_miOOOaqzJP4eVjr8Tr4k1KtwCqBq3PivaKwhBxPnjHcOrYQBMtuU9LXN2yRmKhZ7s-eocTC35kM45H1vk7iskvDyytw0BpSWyie4bzHAO6AyW2BNZGos5Pw9viVY9jonf_6nlx8_3bzeV1uf959eNyty9dBWIppXS1NsqQclWrdIWql4SiIzINSiRTCZSN0qZHxU0jVY28dbxTbd_X4OR5cbGtPeBo5-iPGB9sQG-vd3t7moHQuha8ueOZ_byx2e-fNfu3R58cjSNOFNZkDShlhJAmk5-eJUV-vhC1yODH_8DbsMYpH2ybRoEGaVSG-Aa5GFKK1D8a5WBPOdotR5tztKccrcwasWlSZqeB4tPi50QfNlGPweIQfbK_fwngEriWNQch_wKFlqiL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884060394</pqid></control><display><type>article</type><title>Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding</title><source>Springer Nature - Complete Springer Journals</source><creator>Cochard, Benoît ; Adon, Benjamin ; Rekima, Samah ; Billotte, Norbert ; de Chenon, Roch Desmier ; Koutou, Anatole ; Nouy, Bruno ; Omoré, Alphonse ; Purba, Abdul Razak ; Glazsmann, Jean-Christophe ; Noyer, Jean-Louis</creator><creatorcontrib>Cochard, Benoît ; Adon, Benjamin ; Rekima, Samah ; Billotte, Norbert ; de Chenon, Roch Desmier ; Koutou, Anatole ; Nouy, Bruno ; Omoré, Alphonse ; Purba, Abdul Razak ; Glazsmann, Jean-Christophe ; Noyer, Jean-Louis</creatorcontrib><description>Since the 1960s, there has been very little diversification of oil palm (Elaeis guineensis) seed production, with mainly Deli x La Mé and Deli x Congo type crosses. The Deli origin, which was introduced from Africa into Indonesia in 1848, is unavoidable in breeding. In order to understand the complementarity between the Africa and “Asia” origins, and to diversify the genetic base of oil palm production, the structure of the genetic resources involved in the history of oil palm breeding in relation to African germplasm including subspontaneous populations needs to be understood. In this study, 318 individuals from 26 origins and eight countries were analysed with 14 microsatellite loci. Descriptive and Bayesian analyses of oil palm genetic diversity (Principal Coordinates Analysis, Neighbour-Joining Tree and Structure software) revealed two original groups which reflected the discontinuity of African species at the Dahomey Gap, West Africa (Group I) on the one hand, and “Benin-Nigeria-Cameroon-Congo-Angola” (Group II) on the other hand. The Deli group (Group III), derived from group II, is the result of artificial selection (mass selection). The genetic structuring revealed showed the positive contribution of the within-population mass selection practiced in the Deli population, and explains the success of Deli x La Mé and Deli x Congo crosses. A selection strategy is proposed, based on the yet-to-be-exploited complementarity that exists between the two African genetic groups and on within-group improvement. We suggest (Deli x Group II) x Group I crosses, so that group II benefits from the quality of the Deli origin.</description><identifier>ISSN: 1614-2942</identifier><identifier>EISSN: 1614-2950</identifier><identifier>DOI: 10.1007/s11295-009-0203-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Agricultural sciences ; Biomedical and Life Sciences ; Biotechnology ; Elaeis guineensis ; Forestry ; Genetic diversity ; Genetic resources ; Genetic structure ; Life Sciences ; Original Paper ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Silviculture, forestry ; Tree Biology</subject><ispartof>Tree genetics &amp; genomes, 2009-07, Vol.5 (3), p.493-504</ispartof><rights>Springer-Verlag 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-33c76949e4c5b465a4f3ea2dee98a3ae952a38469fa4198347a1bc1d4bff70c3</citedby><cites>FETCH-LOGICAL-c502t-33c76949e4c5b465a4f3ea2dee98a3ae952a38469fa4198347a1bc1d4bff70c3</cites><orcidid>0000-0002-7389-5621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11295-009-0203-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11295-009-0203-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02667218$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cochard, Benoît</creatorcontrib><creatorcontrib>Adon, Benjamin</creatorcontrib><creatorcontrib>Rekima, Samah</creatorcontrib><creatorcontrib>Billotte, Norbert</creatorcontrib><creatorcontrib>de Chenon, Roch Desmier</creatorcontrib><creatorcontrib>Koutou, Anatole</creatorcontrib><creatorcontrib>Nouy, Bruno</creatorcontrib><creatorcontrib>Omoré, Alphonse</creatorcontrib><creatorcontrib>Purba, Abdul Razak</creatorcontrib><creatorcontrib>Glazsmann, Jean-Christophe</creatorcontrib><creatorcontrib>Noyer, Jean-Louis</creatorcontrib><title>Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding</title><title>Tree genetics &amp; genomes</title><addtitle>Tree Genetics &amp; Genomes</addtitle><description>Since the 1960s, there has been very little diversification of oil palm (Elaeis guineensis) seed production, with mainly Deli x La Mé and Deli x Congo type crosses. The Deli origin, which was introduced from Africa into Indonesia in 1848, is unavoidable in breeding. In order to understand the complementarity between the Africa and “Asia” origins, and to diversify the genetic base of oil palm production, the structure of the genetic resources involved in the history of oil palm breeding in relation to African germplasm including subspontaneous populations needs to be understood. In this study, 318 individuals from 26 origins and eight countries were analysed with 14 microsatellite loci. Descriptive and Bayesian analyses of oil palm genetic diversity (Principal Coordinates Analysis, Neighbour-Joining Tree and Structure software) revealed two original groups which reflected the discontinuity of African species at the Dahomey Gap, West Africa (Group I) on the one hand, and “Benin-Nigeria-Cameroon-Congo-Angola” (Group II) on the other hand. The Deli group (Group III), derived from group II, is the result of artificial selection (mass selection). The genetic structuring revealed showed the positive contribution of the within-population mass selection practiced in the Deli population, and explains the success of Deli x La Mé and Deli x Congo crosses. A selection strategy is proposed, based on the yet-to-be-exploited complementarity that exists between the two African genetic groups and on within-group improvement. We suggest (Deli x Group II) x Group I crosses, so that group II benefits from the quality of the Deli origin.</description><subject>Agricultural sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Elaeis guineensis</subject><subject>Forestry</subject><subject>Genetic diversity</subject><subject>Genetic resources</subject><subject>Genetic structure</subject><subject>Life Sciences</subject><subject>Original Paper</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Silviculture, forestry</subject><subject>Tree Biology</subject><issn>1614-2942</issn><issn>1614-2950</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9v1DAQxSMEEqXwAThhcQD1EBj_iRMfVxW0SCtxoJytiTPJusrGwU5a9dvjVVArcehpRqPfG72ZVxTvOXzhAPXXxLkwVQlgShAgS_miOOOaqzJP4eVjr8Tr4k1KtwCqBq3PivaKwhBxPnjHcOrYQBMtuU9LXN2yRmKhZ7s-eocTC35kM45H1vk7iskvDyytw0BpSWyie4bzHAO6AyW2BNZGos5Pw9viVY9jonf_6nlx8_3bzeV1uf959eNyty9dBWIppXS1NsqQclWrdIWql4SiIzINSiRTCZSN0qZHxU0jVY28dbxTbd_X4OR5cbGtPeBo5-iPGB9sQG-vd3t7moHQuha8ueOZ_byx2e-fNfu3R58cjSNOFNZkDShlhJAmk5-eJUV-vhC1yODH_8DbsMYpH2ybRoEGaVSG-Aa5GFKK1D8a5WBPOdotR5tztKccrcwasWlSZqeB4tPi50QfNlGPweIQfbK_fwngEriWNQch_wKFlqiL</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Cochard, Benoît</creator><creator>Adon, Benjamin</creator><creator>Rekima, Samah</creator><creator>Billotte, Norbert</creator><creator>de Chenon, Roch Desmier</creator><creator>Koutou, Anatole</creator><creator>Nouy, Bruno</creator><creator>Omoré, Alphonse</creator><creator>Purba, Abdul Razak</creator><creator>Glazsmann, Jean-Christophe</creator><creator>Noyer, Jean-Louis</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7389-5621</orcidid></search><sort><creationdate>20090701</creationdate><title>Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding</title><author>Cochard, Benoît ; Adon, Benjamin ; Rekima, Samah ; Billotte, Norbert ; de Chenon, Roch Desmier ; Koutou, Anatole ; Nouy, Bruno ; Omoré, Alphonse ; Purba, Abdul Razak ; Glazsmann, Jean-Christophe ; Noyer, Jean-Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-33c76949e4c5b465a4f3ea2dee98a3ae952a38469fa4198347a1bc1d4bff70c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agricultural sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Elaeis guineensis</topic><topic>Forestry</topic><topic>Genetic diversity</topic><topic>Genetic resources</topic><topic>Genetic structure</topic><topic>Life Sciences</topic><topic>Original Paper</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Silviculture, forestry</topic><topic>Tree Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cochard, Benoît</creatorcontrib><creatorcontrib>Adon, Benjamin</creatorcontrib><creatorcontrib>Rekima, Samah</creatorcontrib><creatorcontrib>Billotte, Norbert</creatorcontrib><creatorcontrib>de Chenon, Roch Desmier</creatorcontrib><creatorcontrib>Koutou, Anatole</creatorcontrib><creatorcontrib>Nouy, Bruno</creatorcontrib><creatorcontrib>Omoré, Alphonse</creatorcontrib><creatorcontrib>Purba, Abdul Razak</creatorcontrib><creatorcontrib>Glazsmann, Jean-Christophe</creatorcontrib><creatorcontrib>Noyer, Jean-Louis</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Tree genetics &amp; genomes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cochard, Benoît</au><au>Adon, Benjamin</au><au>Rekima, Samah</au><au>Billotte, Norbert</au><au>de Chenon, Roch Desmier</au><au>Koutou, Anatole</au><au>Nouy, Bruno</au><au>Omoré, Alphonse</au><au>Purba, Abdul Razak</au><au>Glazsmann, Jean-Christophe</au><au>Noyer, Jean-Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding</atitle><jtitle>Tree genetics &amp; genomes</jtitle><stitle>Tree Genetics &amp; Genomes</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>5</volume><issue>3</issue><spage>493</spage><epage>504</epage><pages>493-504</pages><issn>1614-2942</issn><eissn>1614-2950</eissn><abstract>Since the 1960s, there has been very little diversification of oil palm (Elaeis guineensis) seed production, with mainly Deli x La Mé and Deli x Congo type crosses. The Deli origin, which was introduced from Africa into Indonesia in 1848, is unavoidable in breeding. In order to understand the complementarity between the Africa and “Asia” origins, and to diversify the genetic base of oil palm production, the structure of the genetic resources involved in the history of oil palm breeding in relation to African germplasm including subspontaneous populations needs to be understood. In this study, 318 individuals from 26 origins and eight countries were analysed with 14 microsatellite loci. Descriptive and Bayesian analyses of oil palm genetic diversity (Principal Coordinates Analysis, Neighbour-Joining Tree and Structure software) revealed two original groups which reflected the discontinuity of African species at the Dahomey Gap, West Africa (Group I) on the one hand, and “Benin-Nigeria-Cameroon-Congo-Angola” (Group II) on the other hand. The Deli group (Group III), derived from group II, is the result of artificial selection (mass selection). The genetic structuring revealed showed the positive contribution of the within-population mass selection practiced in the Deli population, and explains the success of Deli x La Mé and Deli x Congo crosses. A selection strategy is proposed, based on the yet-to-be-exploited complementarity that exists between the two African genetic groups and on within-group improvement. We suggest (Deli x Group II) x Group I crosses, so that group II benefits from the quality of the Deli origin.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><doi>10.1007/s11295-009-0203-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7389-5621</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-2942
ispartof Tree genetics & genomes, 2009-07, Vol.5 (3), p.493-504
issn 1614-2942
1614-2950
language eng
recordid cdi_hal_primary_oai_HAL_hal_02667218v1
source Springer Nature - Complete Springer Journals
subjects Agricultural sciences
Biomedical and Life Sciences
Biotechnology
Elaeis guineensis
Forestry
Genetic diversity
Genetic resources
Genetic structure
Life Sciences
Original Paper
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Silviculture, forestry
Tree Biology
title Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A34%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geographic%20and%20genetic%20structure%20of%20African%20oil%20palm%20diversity%20suggests%20new%20approaches%20to%20breeding&rft.jtitle=Tree%20genetics%20&%20genomes&rft.au=Cochard,%20Beno%C3%AEt&rft.date=2009-07-01&rft.volume=5&rft.issue=3&rft.spage=493&rft.epage=504&rft.pages=493-504&rft.issn=1614-2942&rft.eissn=1614-2950&rft_id=info:doi/10.1007/s11295-009-0203-3&rft_dat=%3Cproquest_hal_p%3E20072272%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884060394&rft_id=info:pmid/&rfr_iscdi=true