Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding
Since the 1960s, there has been very little diversification of oil palm (Elaeis guineensis) seed production, with mainly Deli x La Mé and Deli x Congo type crosses. The Deli origin, which was introduced from Africa into Indonesia in 1848, is unavoidable in breeding. In order to understand the comple...
Gespeichert in:
Veröffentlicht in: | Tree genetics & genomes 2009-07, Vol.5 (3), p.493-504 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 504 |
---|---|
container_issue | 3 |
container_start_page | 493 |
container_title | Tree genetics & genomes |
container_volume | 5 |
creator | Cochard, Benoît Adon, Benjamin Rekima, Samah Billotte, Norbert de Chenon, Roch Desmier Koutou, Anatole Nouy, Bruno Omoré, Alphonse Purba, Abdul Razak Glazsmann, Jean-Christophe Noyer, Jean-Louis |
description | Since the 1960s, there has been very little diversification of oil palm (Elaeis guineensis) seed production, with mainly Deli x La Mé and Deli x Congo type crosses. The Deli origin, which was introduced from Africa into Indonesia in 1848, is unavoidable in breeding. In order to understand the complementarity between the Africa and “Asia” origins, and to diversify the genetic base of oil palm production, the structure of the genetic resources involved in the history of oil palm breeding in relation to African germplasm including subspontaneous populations needs to be understood. In this study, 318 individuals from 26 origins and eight countries were analysed with 14 microsatellite loci. Descriptive and Bayesian analyses of oil palm genetic diversity (Principal Coordinates Analysis, Neighbour-Joining Tree and Structure software) revealed two original groups which reflected the discontinuity of African species at the Dahomey Gap, West Africa (Group I) on the one hand, and “Benin-Nigeria-Cameroon-Congo-Angola” (Group II) on the other hand. The Deli group (Group III), derived from group II, is the result of artificial selection (mass selection). The genetic structuring revealed showed the positive contribution of the within-population mass selection practiced in the Deli population, and explains the success of Deli x La Mé and Deli x Congo crosses. A selection strategy is proposed, based on the yet-to-be-exploited complementarity that exists between the two African genetic groups and on within-group improvement. We suggest (Deli x Group II) x Group I crosses, so that group II benefits from the quality of the Deli origin. |
doi_str_mv | 10.1007/s11295-009-0203-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02667218v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20072272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-33c76949e4c5b465a4f3ea2dee98a3ae952a38469fa4198347a1bc1d4bff70c3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEEqXwAThhcQD1EBj_iRMfVxW0SCtxoJytiTPJusrGwU5a9dvjVVArcehpRqPfG72ZVxTvOXzhAPXXxLkwVQlgShAgS_miOOOaqzJP4eVjr8Tr4k1KtwCqBq3PivaKwhBxPnjHcOrYQBMtuU9LXN2yRmKhZ7s-eocTC35kM45H1vk7iskvDyytw0BpSWyie4bzHAO6AyW2BNZGos5Pw9viVY9jonf_6nlx8_3bzeV1uf959eNyty9dBWIppXS1NsqQclWrdIWql4SiIzINSiRTCZSN0qZHxU0jVY28dbxTbd_X4OR5cbGtPeBo5-iPGB9sQG-vd3t7moHQuha8ueOZ_byx2e-fNfu3R58cjSNOFNZkDShlhJAmk5-eJUV-vhC1yODH_8DbsMYpH2ybRoEGaVSG-Aa5GFKK1D8a5WBPOdotR5tztKccrcwasWlSZqeB4tPi50QfNlGPweIQfbK_fwngEriWNQch_wKFlqiL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884060394</pqid></control><display><type>article</type><title>Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding</title><source>Springer Nature - Complete Springer Journals</source><creator>Cochard, Benoît ; Adon, Benjamin ; Rekima, Samah ; Billotte, Norbert ; de Chenon, Roch Desmier ; Koutou, Anatole ; Nouy, Bruno ; Omoré, Alphonse ; Purba, Abdul Razak ; Glazsmann, Jean-Christophe ; Noyer, Jean-Louis</creator><creatorcontrib>Cochard, Benoît ; Adon, Benjamin ; Rekima, Samah ; Billotte, Norbert ; de Chenon, Roch Desmier ; Koutou, Anatole ; Nouy, Bruno ; Omoré, Alphonse ; Purba, Abdul Razak ; Glazsmann, Jean-Christophe ; Noyer, Jean-Louis</creatorcontrib><description>Since the 1960s, there has been very little diversification of oil palm (Elaeis guineensis) seed production, with mainly Deli x La Mé and Deli x Congo type crosses. The Deli origin, which was introduced from Africa into Indonesia in 1848, is unavoidable in breeding. In order to understand the complementarity between the Africa and “Asia” origins, and to diversify the genetic base of oil palm production, the structure of the genetic resources involved in the history of oil palm breeding in relation to African germplasm including subspontaneous populations needs to be understood. In this study, 318 individuals from 26 origins and eight countries were analysed with 14 microsatellite loci. Descriptive and Bayesian analyses of oil palm genetic diversity (Principal Coordinates Analysis, Neighbour-Joining Tree and Structure software) revealed two original groups which reflected the discontinuity of African species at the Dahomey Gap, West Africa (Group I) on the one hand, and “Benin-Nigeria-Cameroon-Congo-Angola” (Group II) on the other hand. The Deli group (Group III), derived from group II, is the result of artificial selection (mass selection). The genetic structuring revealed showed the positive contribution of the within-population mass selection practiced in the Deli population, and explains the success of Deli x La Mé and Deli x Congo crosses. A selection strategy is proposed, based on the yet-to-be-exploited complementarity that exists between the two African genetic groups and on within-group improvement. We suggest (Deli x Group II) x Group I crosses, so that group II benefits from the quality of the Deli origin.</description><identifier>ISSN: 1614-2942</identifier><identifier>EISSN: 1614-2950</identifier><identifier>DOI: 10.1007/s11295-009-0203-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Agricultural sciences ; Biomedical and Life Sciences ; Biotechnology ; Elaeis guineensis ; Forestry ; Genetic diversity ; Genetic resources ; Genetic structure ; Life Sciences ; Original Paper ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Silviculture, forestry ; Tree Biology</subject><ispartof>Tree genetics & genomes, 2009-07, Vol.5 (3), p.493-504</ispartof><rights>Springer-Verlag 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-33c76949e4c5b465a4f3ea2dee98a3ae952a38469fa4198347a1bc1d4bff70c3</citedby><cites>FETCH-LOGICAL-c502t-33c76949e4c5b465a4f3ea2dee98a3ae952a38469fa4198347a1bc1d4bff70c3</cites><orcidid>0000-0002-7389-5621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11295-009-0203-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11295-009-0203-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02667218$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cochard, Benoît</creatorcontrib><creatorcontrib>Adon, Benjamin</creatorcontrib><creatorcontrib>Rekima, Samah</creatorcontrib><creatorcontrib>Billotte, Norbert</creatorcontrib><creatorcontrib>de Chenon, Roch Desmier</creatorcontrib><creatorcontrib>Koutou, Anatole</creatorcontrib><creatorcontrib>Nouy, Bruno</creatorcontrib><creatorcontrib>Omoré, Alphonse</creatorcontrib><creatorcontrib>Purba, Abdul Razak</creatorcontrib><creatorcontrib>Glazsmann, Jean-Christophe</creatorcontrib><creatorcontrib>Noyer, Jean-Louis</creatorcontrib><title>Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding</title><title>Tree genetics & genomes</title><addtitle>Tree Genetics & Genomes</addtitle><description>Since the 1960s, there has been very little diversification of oil palm (Elaeis guineensis) seed production, with mainly Deli x La Mé and Deli x Congo type crosses. The Deli origin, which was introduced from Africa into Indonesia in 1848, is unavoidable in breeding. In order to understand the complementarity between the Africa and “Asia” origins, and to diversify the genetic base of oil palm production, the structure of the genetic resources involved in the history of oil palm breeding in relation to African germplasm including subspontaneous populations needs to be understood. In this study, 318 individuals from 26 origins and eight countries were analysed with 14 microsatellite loci. Descriptive and Bayesian analyses of oil palm genetic diversity (Principal Coordinates Analysis, Neighbour-Joining Tree and Structure software) revealed two original groups which reflected the discontinuity of African species at the Dahomey Gap, West Africa (Group I) on the one hand, and “Benin-Nigeria-Cameroon-Congo-Angola” (Group II) on the other hand. The Deli group (Group III), derived from group II, is the result of artificial selection (mass selection). The genetic structuring revealed showed the positive contribution of the within-population mass selection practiced in the Deli population, and explains the success of Deli x La Mé and Deli x Congo crosses. A selection strategy is proposed, based on the yet-to-be-exploited complementarity that exists between the two African genetic groups and on within-group improvement. We suggest (Deli x Group II) x Group I crosses, so that group II benefits from the quality of the Deli origin.</description><subject>Agricultural sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Elaeis guineensis</subject><subject>Forestry</subject><subject>Genetic diversity</subject><subject>Genetic resources</subject><subject>Genetic structure</subject><subject>Life Sciences</subject><subject>Original Paper</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Silviculture, forestry</subject><subject>Tree Biology</subject><issn>1614-2942</issn><issn>1614-2950</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9v1DAQxSMEEqXwAThhcQD1EBj_iRMfVxW0SCtxoJytiTPJusrGwU5a9dvjVVArcehpRqPfG72ZVxTvOXzhAPXXxLkwVQlgShAgS_miOOOaqzJP4eVjr8Tr4k1KtwCqBq3PivaKwhBxPnjHcOrYQBMtuU9LXN2yRmKhZ7s-eocTC35kM45H1vk7iskvDyytw0BpSWyie4bzHAO6AyW2BNZGos5Pw9viVY9jonf_6nlx8_3bzeV1uf959eNyty9dBWIppXS1NsqQclWrdIWql4SiIzINSiRTCZSN0qZHxU0jVY28dbxTbd_X4OR5cbGtPeBo5-iPGB9sQG-vd3t7moHQuha8ueOZ_byx2e-fNfu3R58cjSNOFNZkDShlhJAmk5-eJUV-vhC1yODH_8DbsMYpH2ybRoEGaVSG-Aa5GFKK1D8a5WBPOdotR5tztKccrcwasWlSZqeB4tPi50QfNlGPweIQfbK_fwngEriWNQch_wKFlqiL</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Cochard, Benoît</creator><creator>Adon, Benjamin</creator><creator>Rekima, Samah</creator><creator>Billotte, Norbert</creator><creator>de Chenon, Roch Desmier</creator><creator>Koutou, Anatole</creator><creator>Nouy, Bruno</creator><creator>Omoré, Alphonse</creator><creator>Purba, Abdul Razak</creator><creator>Glazsmann, Jean-Christophe</creator><creator>Noyer, Jean-Louis</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7389-5621</orcidid></search><sort><creationdate>20090701</creationdate><title>Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding</title><author>Cochard, Benoît ; Adon, Benjamin ; Rekima, Samah ; Billotte, Norbert ; de Chenon, Roch Desmier ; Koutou, Anatole ; Nouy, Bruno ; Omoré, Alphonse ; Purba, Abdul Razak ; Glazsmann, Jean-Christophe ; Noyer, Jean-Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-33c76949e4c5b465a4f3ea2dee98a3ae952a38469fa4198347a1bc1d4bff70c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agricultural sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Elaeis guineensis</topic><topic>Forestry</topic><topic>Genetic diversity</topic><topic>Genetic resources</topic><topic>Genetic structure</topic><topic>Life Sciences</topic><topic>Original Paper</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Silviculture, forestry</topic><topic>Tree Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cochard, Benoît</creatorcontrib><creatorcontrib>Adon, Benjamin</creatorcontrib><creatorcontrib>Rekima, Samah</creatorcontrib><creatorcontrib>Billotte, Norbert</creatorcontrib><creatorcontrib>de Chenon, Roch Desmier</creatorcontrib><creatorcontrib>Koutou, Anatole</creatorcontrib><creatorcontrib>Nouy, Bruno</creatorcontrib><creatorcontrib>Omoré, Alphonse</creatorcontrib><creatorcontrib>Purba, Abdul Razak</creatorcontrib><creatorcontrib>Glazsmann, Jean-Christophe</creatorcontrib><creatorcontrib>Noyer, Jean-Louis</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Tree genetics & genomes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cochard, Benoît</au><au>Adon, Benjamin</au><au>Rekima, Samah</au><au>Billotte, Norbert</au><au>de Chenon, Roch Desmier</au><au>Koutou, Anatole</au><au>Nouy, Bruno</au><au>Omoré, Alphonse</au><au>Purba, Abdul Razak</au><au>Glazsmann, Jean-Christophe</au><au>Noyer, Jean-Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding</atitle><jtitle>Tree genetics & genomes</jtitle><stitle>Tree Genetics & Genomes</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>5</volume><issue>3</issue><spage>493</spage><epage>504</epage><pages>493-504</pages><issn>1614-2942</issn><eissn>1614-2950</eissn><abstract>Since the 1960s, there has been very little diversification of oil palm (Elaeis guineensis) seed production, with mainly Deli x La Mé and Deli x Congo type crosses. The Deli origin, which was introduced from Africa into Indonesia in 1848, is unavoidable in breeding. In order to understand the complementarity between the Africa and “Asia” origins, and to diversify the genetic base of oil palm production, the structure of the genetic resources involved in the history of oil palm breeding in relation to African germplasm including subspontaneous populations needs to be understood. In this study, 318 individuals from 26 origins and eight countries were analysed with 14 microsatellite loci. Descriptive and Bayesian analyses of oil palm genetic diversity (Principal Coordinates Analysis, Neighbour-Joining Tree and Structure software) revealed two original groups which reflected the discontinuity of African species at the Dahomey Gap, West Africa (Group I) on the one hand, and “Benin-Nigeria-Cameroon-Congo-Angola” (Group II) on the other hand. The Deli group (Group III), derived from group II, is the result of artificial selection (mass selection). The genetic structuring revealed showed the positive contribution of the within-population mass selection practiced in the Deli population, and explains the success of Deli x La Mé and Deli x Congo crosses. A selection strategy is proposed, based on the yet-to-be-exploited complementarity that exists between the two African genetic groups and on within-group improvement. We suggest (Deli x Group II) x Group I crosses, so that group II benefits from the quality of the Deli origin.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><doi>10.1007/s11295-009-0203-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7389-5621</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-2942 |
ispartof | Tree genetics & genomes, 2009-07, Vol.5 (3), p.493-504 |
issn | 1614-2942 1614-2950 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02667218v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Agricultural sciences Biomedical and Life Sciences Biotechnology Elaeis guineensis Forestry Genetic diversity Genetic resources Genetic structure Life Sciences Original Paper Plant Breeding/Biotechnology Plant Genetics and Genomics Silviculture, forestry Tree Biology |
title | Geographic and genetic structure of African oil palm diversity suggests new approaches to breeding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A34%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geographic%20and%20genetic%20structure%20of%20African%20oil%20palm%20diversity%20suggests%20new%20approaches%20to%20breeding&rft.jtitle=Tree%20genetics%20&%20genomes&rft.au=Cochard,%20Beno%C3%AEt&rft.date=2009-07-01&rft.volume=5&rft.issue=3&rft.spage=493&rft.epage=504&rft.pages=493-504&rft.issn=1614-2942&rft.eissn=1614-2950&rft_id=info:doi/10.1007/s11295-009-0203-3&rft_dat=%3Cproquest_hal_p%3E20072272%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=884060394&rft_id=info:pmid/&rfr_iscdi=true |