CFD modelling of a liquid–solid fluidized bed

A multifluid Eulerian computational fluid dynamics (CFD) model with granular flow extension is used to simulate a liquid–solid fluidized bed. The numerical simulations are evaluated qualitatively by experimental data from the literature and quantitatively by comparison with new experimental data. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2007-11, Vol.62 (22), p.6334-6348
Hauptverfasser: Cornelissen, Jack T., Taghipour, Fariborz, Escudié, Renaud, Ellis, Naoko, Grace, John R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6348
container_issue 22
container_start_page 6334
container_title Chemical engineering science
container_volume 62
creator Cornelissen, Jack T.
Taghipour, Fariborz
Escudié, Renaud
Ellis, Naoko
Grace, John R.
description A multifluid Eulerian computational fluid dynamics (CFD) model with granular flow extension is used to simulate a liquid–solid fluidized bed. The numerical simulations are evaluated qualitatively by experimental data from the literature and quantitatively by comparison with new experimental data. The effects of mesh size, time step and convergence criteria are investigated. Varying the coefficient of restitution did not alter the results significantly. The Gidaspow drag relationship predicted a higher voidage than the Wen and Yu drag law. Two different liquid distributors (uniform and non-uniform) were simulated and compared, but a better representation of the geometry of the distributor plate did not greatly influence the results. Qualitatively, the simulations show trends similar to experimental trends reported by various authors. The predictions are also compared with new experimental results for 1.13 mm glass spheres at a wide variety of superficial liquid velocities (0.0085–0.110 m/s) and two different temperatures (12 and 33 ∘ C ) significantly affecting the liquid viscosity. The CFD model predictions are within 5% of the steady-state experimental data and show the correct trend with variation in viscosity.
doi_str_mv 10.1016/j.ces.2007.07.014
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02666481v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250907005477</els_id><sourcerecordid>21120849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-fa92ac4bc6b63c6f341ad053ef5e6ce2d950f78f426a839d93068881509302773</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQxhdRsFYfwFsuCh6SzuxuNgmeSrVWKHjR87LdP7olbdpsW9CT7-Ab-iRuqOhNYWCY4TffzHyEnCNkCCgG80zbkFGAIusC-QHpYVmwlHPID0kPAKqU5lAdk5MQ5rEsCoQeGYzGN8miMbau_fI5aVyiktqvt958vn-EpvYmcXWs_Js1ycyaU3LkVB3s2Xfuk6fx7eNokk4f7u5Hw2mqOWWb1KmKKs1nWswE08IxjspAzqzLrdCWmioHV5SOU6FKVpmKgSjLEuOBDGhRsD652uu-qFquWr9Q7atslJeT4VR2PaBCCF7iDiN7uWdXbbPe2rCRCx90_EgtbbMNkkVRzjj8C1JECiWvIoh7ULdNCK11PycgyM5vOZfRb9n5LbtAHmcuvsVV0Kp2rVpqH34HKywoQvfZ9Z6z0b6dt60M2tultsa3Vm-kafwfW74AWbaSYA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21120849</pqid></control><display><type>article</type><title>CFD modelling of a liquid–solid fluidized bed</title><source>Elsevier ScienceDirect Journals</source><creator>Cornelissen, Jack T. ; Taghipour, Fariborz ; Escudié, Renaud ; Ellis, Naoko ; Grace, John R.</creator><creatorcontrib>Cornelissen, Jack T. ; Taghipour, Fariborz ; Escudié, Renaud ; Ellis, Naoko ; Grace, John R.</creatorcontrib><description>A multifluid Eulerian computational fluid dynamics (CFD) model with granular flow extension is used to simulate a liquid–solid fluidized bed. The numerical simulations are evaluated qualitatively by experimental data from the literature and quantitatively by comparison with new experimental data. The effects of mesh size, time step and convergence criteria are investigated. Varying the coefficient of restitution did not alter the results significantly. The Gidaspow drag relationship predicted a higher voidage than the Wen and Yu drag law. Two different liquid distributors (uniform and non-uniform) were simulated and compared, but a better representation of the geometry of the distributor plate did not greatly influence the results. Qualitatively, the simulations show trends similar to experimental trends reported by various authors. The predictions are also compared with new experimental results for 1.13 mm glass spheres at a wide variety of superficial liquid velocities (0.0085–0.110 m/s) and two different temperatures (12 and 33 ∘ C ) significantly affecting the liquid viscosity. The CFD model predictions are within 5% of the steady-state experimental data and show the correct trend with variation in viscosity.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2007.07.014</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; CFD ; Chemical engineering ; Chemical Sciences ; Computation ; Exact sciences and technology ; Fluidization ; Hydrodynamics of contact apparatus ; Liquid fluidized bed ; Mathematical modelling ; Miscellaneous ; Multiphase flow ; Solid-solid systems</subject><ispartof>Chemical engineering science, 2007-11, Vol.62 (22), p.6334-6348</ispartof><rights>2007 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-fa92ac4bc6b63c6f341ad053ef5e6ce2d950f78f426a839d93068881509302773</citedby><cites>FETCH-LOGICAL-c423t-fa92ac4bc6b63c6f341ad053ef5e6ce2d950f78f426a839d93068881509302773</cites><orcidid>0000-0003-0736-0327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0009250907005477$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19172107$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02666481$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cornelissen, Jack T.</creatorcontrib><creatorcontrib>Taghipour, Fariborz</creatorcontrib><creatorcontrib>Escudié, Renaud</creatorcontrib><creatorcontrib>Ellis, Naoko</creatorcontrib><creatorcontrib>Grace, John R.</creatorcontrib><title>CFD modelling of a liquid–solid fluidized bed</title><title>Chemical engineering science</title><description>A multifluid Eulerian computational fluid dynamics (CFD) model with granular flow extension is used to simulate a liquid–solid fluidized bed. The numerical simulations are evaluated qualitatively by experimental data from the literature and quantitatively by comparison with new experimental data. The effects of mesh size, time step and convergence criteria are investigated. Varying the coefficient of restitution did not alter the results significantly. The Gidaspow drag relationship predicted a higher voidage than the Wen and Yu drag law. Two different liquid distributors (uniform and non-uniform) were simulated and compared, but a better representation of the geometry of the distributor plate did not greatly influence the results. Qualitatively, the simulations show trends similar to experimental trends reported by various authors. The predictions are also compared with new experimental results for 1.13 mm glass spheres at a wide variety of superficial liquid velocities (0.0085–0.110 m/s) and two different temperatures (12 and 33 ∘ C ) significantly affecting the liquid viscosity. The CFD model predictions are within 5% of the steady-state experimental data and show the correct trend with variation in viscosity.</description><subject>Applied sciences</subject><subject>CFD</subject><subject>Chemical engineering</subject><subject>Chemical Sciences</subject><subject>Computation</subject><subject>Exact sciences and technology</subject><subject>Fluidization</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Liquid fluidized bed</subject><subject>Mathematical modelling</subject><subject>Miscellaneous</subject><subject>Multiphase flow</subject><subject>Solid-solid systems</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQxhdRsFYfwFsuCh6SzuxuNgmeSrVWKHjR87LdP7olbdpsW9CT7-Ab-iRuqOhNYWCY4TffzHyEnCNkCCgG80zbkFGAIusC-QHpYVmwlHPID0kPAKqU5lAdk5MQ5rEsCoQeGYzGN8miMbau_fI5aVyiktqvt958vn-EpvYmcXWs_Js1ycyaU3LkVB3s2Xfuk6fx7eNokk4f7u5Hw2mqOWWb1KmKKs1nWswE08IxjspAzqzLrdCWmioHV5SOU6FKVpmKgSjLEuOBDGhRsD652uu-qFquWr9Q7atslJeT4VR2PaBCCF7iDiN7uWdXbbPe2rCRCx90_EgtbbMNkkVRzjj8C1JECiWvIoh7ULdNCK11PycgyM5vOZfRb9n5LbtAHmcuvsVV0Kp2rVpqH34HKywoQvfZ9Z6z0b6dt60M2tultsa3Vm-kafwfW74AWbaSYA</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Cornelissen, Jack T.</creator><creator>Taghipour, Fariborz</creator><creator>Escudié, Renaud</creator><creator>Ellis, Naoko</creator><creator>Grace, John R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0736-0327</orcidid></search><sort><creationdate>20071101</creationdate><title>CFD modelling of a liquid–solid fluidized bed</title><author>Cornelissen, Jack T. ; Taghipour, Fariborz ; Escudié, Renaud ; Ellis, Naoko ; Grace, John R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-fa92ac4bc6b63c6f341ad053ef5e6ce2d950f78f426a839d93068881509302773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>CFD</topic><topic>Chemical engineering</topic><topic>Chemical Sciences</topic><topic>Computation</topic><topic>Exact sciences and technology</topic><topic>Fluidization</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Liquid fluidized bed</topic><topic>Mathematical modelling</topic><topic>Miscellaneous</topic><topic>Multiphase flow</topic><topic>Solid-solid systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cornelissen, Jack T.</creatorcontrib><creatorcontrib>Taghipour, Fariborz</creatorcontrib><creatorcontrib>Escudié, Renaud</creatorcontrib><creatorcontrib>Ellis, Naoko</creatorcontrib><creatorcontrib>Grace, John R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cornelissen, Jack T.</au><au>Taghipour, Fariborz</au><au>Escudié, Renaud</au><au>Ellis, Naoko</au><au>Grace, John R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD modelling of a liquid–solid fluidized bed</atitle><jtitle>Chemical engineering science</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>62</volume><issue>22</issue><spage>6334</spage><epage>6348</epage><pages>6334-6348</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>A multifluid Eulerian computational fluid dynamics (CFD) model with granular flow extension is used to simulate a liquid–solid fluidized bed. The numerical simulations are evaluated qualitatively by experimental data from the literature and quantitatively by comparison with new experimental data. The effects of mesh size, time step and convergence criteria are investigated. Varying the coefficient of restitution did not alter the results significantly. The Gidaspow drag relationship predicted a higher voidage than the Wen and Yu drag law. Two different liquid distributors (uniform and non-uniform) were simulated and compared, but a better representation of the geometry of the distributor plate did not greatly influence the results. Qualitatively, the simulations show trends similar to experimental trends reported by various authors. The predictions are also compared with new experimental results for 1.13 mm glass spheres at a wide variety of superficial liquid velocities (0.0085–0.110 m/s) and two different temperatures (12 and 33 ∘ C ) significantly affecting the liquid viscosity. The CFD model predictions are within 5% of the steady-state experimental data and show the correct trend with variation in viscosity.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2007.07.014</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0736-0327</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2007-11, Vol.62 (22), p.6334-6348
issn 0009-2509
1873-4405
language eng
recordid cdi_hal_primary_oai_HAL_hal_02666481v1
source Elsevier ScienceDirect Journals
subjects Applied sciences
CFD
Chemical engineering
Chemical Sciences
Computation
Exact sciences and technology
Fluidization
Hydrodynamics of contact apparatus
Liquid fluidized bed
Mathematical modelling
Miscellaneous
Multiphase flow
Solid-solid systems
title CFD modelling of a liquid–solid fluidized bed
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20modelling%20of%20a%20liquid%E2%80%93solid%20fluidized%20bed&rft.jtitle=Chemical%20engineering%20science&rft.au=Cornelissen,%20Jack%20T.&rft.date=2007-11-01&rft.volume=62&rft.issue=22&rft.spage=6334&rft.epage=6348&rft.pages=6334-6348&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2007.07.014&rft_dat=%3Cproquest_hal_p%3E21120849%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21120849&rft_id=info:pmid/&rft_els_id=S0009250907005477&rfr_iscdi=true