Exploring the acidotolerance of β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion
The LacZ gene encoding β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 ( L. bulgaricus) was cloned, sequenced and expressed in Escherichia coli, followed by purification and characterization of the protein. The recombinant enzyme was shown to be a homotetramer and could b...
Gespeichert in:
Veröffentlicht in: | Research in microbiology 2009-12, Vol.160 (10), p.775-784 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 784 |
---|---|
container_issue | 10 |
container_start_page | 775 |
container_title | Research in microbiology |
container_volume | 160 |
creator | Rhimi, Moez Aghajari, Nushin Jaouadi, Bassem Juy, Michel Boudebbouze, Samira Maguin, Emmanuelle Haser, Richard Bejar, Samir |
description | The
LacZ gene encoding β-galactosidase from
Lactobacillus delbrueckii subsp.
bulgaricus ATCC 11842 (
L. bulgaricus) was cloned, sequenced and expressed in
Escherichia coli, followed by purification and characterization of the protein. The recombinant enzyme was shown to be a homotetramer and could be distinguished from homologues by its relatively low and broad optimal temperature range, from 35 to 50
°C, coupled with an optimal pH of 5.0–5.5. Remarkably, the E491A mutant showed the same optimal temperature, but displayed an optimal pH at 6.5–7.0. Whilst these β-galactosidases are inhibited by Cu
2+ they require only 1
mM Mn
2+ and 1
mM Co
2+ for optimal activity and thermostability. The wild-type enzyme was remarkably stable at acid pH values when compared to mutant E491A. Kinetic studies demonstrated that the E491A mutation affected catalysis rather than enzyme affinity. Furthermore, the wild-type protein efficiently cleaved lactose extracted from whey; however, in milk the E491A mutant showed the highest lactose bioconversion rate. Thus, these enzymes are interesting at the industrial level for hydrolysis of lactose extracted from whey or milk, and thus could contribute to overcoming the lactose intolerance problem generated by milk products. |
doi_str_mv | 10.1016/j.resmic.2009.09.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02663368v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0923250809001466</els_id><sourcerecordid>734172676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-442b2c2c3263acde668ee6c37ba2d0230abcbad44ee46aa291787670e3af18973</originalsourceid><addsrcrecordid>eNp9kd-K1DAUh4Mo7uzqG4jkRmQvOubfJK0XC8uyusKAN3odTtPT2YxpMybt4PoWvooP4jPZ0mG9Ew4EDt_vl5CPkFecrTnj-t1-nTB33q0FY9V6HqaekBU3uioMF_IpWbFKyEJsWHlGznPeM8Y3xqjn5IxXptSs2qzIr9sfhxCT73d0uEcKzjdxiAET9A5pbOmf38UOArghZt9ARtqm2NHtvKgnOoQx0wZDnUZ037yneazzYU3rMewgeTfm9xR6CsOQpog_IsX-50M31cREl1qktY8u9kdM2cf-BXnWQsj48nRekK8fbr_c3BXbzx8_3VxvC6cMHwqlRC2ccFJoCa5BrUtE7aSpQTRMSAa1q6FRClFpAFFxUxptGEpoeVkZeUEul957CPaQfAfpwUbw9u56a-cdE1pLqcsjn9i3C3tI8fuIebCdzw5DgB7jmK2RihuhjZ5ItZAuxZwTto_VnNnZm93bxZudvdl5mJpir08XjHWHzb_QSdQEvDkBkB2Edvbj8yMnhFRmw2buauFw-rqjx2Sz8zi5bHxCN9gm-v-_5C9dNLwY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734172676</pqid></control><display><type>article</type><title>Exploring the acidotolerance of β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Rhimi, Moez ; Aghajari, Nushin ; Jaouadi, Bassem ; Juy, Michel ; Boudebbouze, Samira ; Maguin, Emmanuelle ; Haser, Richard ; Bejar, Samir</creator><creatorcontrib>Rhimi, Moez ; Aghajari, Nushin ; Jaouadi, Bassem ; Juy, Michel ; Boudebbouze, Samira ; Maguin, Emmanuelle ; Haser, Richard ; Bejar, Samir</creatorcontrib><description>The
LacZ gene encoding β-galactosidase from
Lactobacillus delbrueckii subsp.
bulgaricus ATCC 11842 (
L. bulgaricus) was cloned, sequenced and expressed in
Escherichia coli, followed by purification and characterization of the protein. The recombinant enzyme was shown to be a homotetramer and could be distinguished from homologues by its relatively low and broad optimal temperature range, from 35 to 50
°C, coupled with an optimal pH of 5.0–5.5. Remarkably, the E491A mutant showed the same optimal temperature, but displayed an optimal pH at 6.5–7.0. Whilst these β-galactosidases are inhibited by Cu
2+ they require only 1
mM Mn
2+ and 1
mM Co
2+ for optimal activity and thermostability. The wild-type enzyme was remarkably stable at acid pH values when compared to mutant E491A. Kinetic studies demonstrated that the E491A mutation affected catalysis rather than enzyme affinity. Furthermore, the wild-type protein efficiently cleaved lactose extracted from whey; however, in milk the E491A mutant showed the highest lactose bioconversion rate. Thus, these enzymes are interesting at the industrial level for hydrolysis of lactose extracted from whey or milk, and thus could contribute to overcoming the lactose intolerance problem generated by milk products.</description><identifier>ISSN: 0923-2508</identifier><identifier>EISSN: 1769-7123</identifier><identifier>EISSN: 0923-2508</identifier><identifier>DOI: 10.1016/j.resmic.2009.09.004</identifier><identifier>PMID: 19786095</identifier><language>eng</language><publisher>Issy-les-Moulineaux: Elsevier SAS</publisher><subject>Acidotolerance ; beta-Galactosidase - genetics ; beta-Galactosidase - isolation & purification ; beta-Galactosidase - metabolism ; Biological and medical sciences ; Biotransformation ; Cloning, Molecular ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Genes, Bacterial ; Hydrogen-Ion Concentration ; Hydrolysis - drug effects ; Lac Operon ; Lactobacillus delbrueckii - enzymology ; Lactobacillus delbrueckii - genetics ; Lactose - metabolism ; Lactose hydrolysis ; Life Sciences ; Microbiology ; Molecular modeling ; Sequence Analysis, DNA ; Site-directed mutagenesis ; Temperature ; β-Galactosidase</subject><ispartof>Research in microbiology, 2009-12, Vol.160 (10), p.775-784</ispartof><rights>2009 Elsevier Masson SAS</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-442b2c2c3263acde668ee6c37ba2d0230abcbad44ee46aa291787670e3af18973</citedby><cites>FETCH-LOGICAL-c471t-442b2c2c3263acde668ee6c37ba2d0230abcbad44ee46aa291787670e3af18973</cites><orcidid>0000-0001-5452-3382 ; 0000-0002-2245-2679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.resmic.2009.09.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22347505$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19786095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02663368$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rhimi, Moez</creatorcontrib><creatorcontrib>Aghajari, Nushin</creatorcontrib><creatorcontrib>Jaouadi, Bassem</creatorcontrib><creatorcontrib>Juy, Michel</creatorcontrib><creatorcontrib>Boudebbouze, Samira</creatorcontrib><creatorcontrib>Maguin, Emmanuelle</creatorcontrib><creatorcontrib>Haser, Richard</creatorcontrib><creatorcontrib>Bejar, Samir</creatorcontrib><title>Exploring the acidotolerance of β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion</title><title>Research in microbiology</title><addtitle>Res Microbiol</addtitle><description>The
LacZ gene encoding β-galactosidase from
Lactobacillus delbrueckii subsp.
bulgaricus ATCC 11842 (
L. bulgaricus) was cloned, sequenced and expressed in
Escherichia coli, followed by purification and characterization of the protein. The recombinant enzyme was shown to be a homotetramer and could be distinguished from homologues by its relatively low and broad optimal temperature range, from 35 to 50
°C, coupled with an optimal pH of 5.0–5.5. Remarkably, the E491A mutant showed the same optimal temperature, but displayed an optimal pH at 6.5–7.0. Whilst these β-galactosidases are inhibited by Cu
2+ they require only 1
mM Mn
2+ and 1
mM Co
2+ for optimal activity and thermostability. The wild-type enzyme was remarkably stable at acid pH values when compared to mutant E491A. Kinetic studies demonstrated that the E491A mutation affected catalysis rather than enzyme affinity. Furthermore, the wild-type protein efficiently cleaved lactose extracted from whey; however, in milk the E491A mutant showed the highest lactose bioconversion rate. Thus, these enzymes are interesting at the industrial level for hydrolysis of lactose extracted from whey or milk, and thus could contribute to overcoming the lactose intolerance problem generated by milk products.</description><subject>Acidotolerance</subject><subject>beta-Galactosidase - genetics</subject><subject>beta-Galactosidase - isolation & purification</subject><subject>beta-Galactosidase - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biotransformation</subject><subject>Cloning, Molecular</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Genes, Bacterial</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis - drug effects</subject><subject>Lac Operon</subject><subject>Lactobacillus delbrueckii - enzymology</subject><subject>Lactobacillus delbrueckii - genetics</subject><subject>Lactose - metabolism</subject><subject>Lactose hydrolysis</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Molecular modeling</subject><subject>Sequence Analysis, DNA</subject><subject>Site-directed mutagenesis</subject><subject>Temperature</subject><subject>β-Galactosidase</subject><issn>0923-2508</issn><issn>1769-7123</issn><issn>0923-2508</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd-K1DAUh4Mo7uzqG4jkRmQvOubfJK0XC8uyusKAN3odTtPT2YxpMybt4PoWvooP4jPZ0mG9Ew4EDt_vl5CPkFecrTnj-t1-nTB33q0FY9V6HqaekBU3uioMF_IpWbFKyEJsWHlGznPeM8Y3xqjn5IxXptSs2qzIr9sfhxCT73d0uEcKzjdxiAET9A5pbOmf38UOArghZt9ARtqm2NHtvKgnOoQx0wZDnUZ037yneazzYU3rMewgeTfm9xR6CsOQpog_IsX-50M31cREl1qktY8u9kdM2cf-BXnWQsj48nRekK8fbr_c3BXbzx8_3VxvC6cMHwqlRC2ccFJoCa5BrUtE7aSpQTRMSAa1q6FRClFpAFFxUxptGEpoeVkZeUEul957CPaQfAfpwUbw9u56a-cdE1pLqcsjn9i3C3tI8fuIebCdzw5DgB7jmK2RihuhjZ5ItZAuxZwTto_VnNnZm93bxZudvdl5mJpir08XjHWHzb_QSdQEvDkBkB2Edvbj8yMnhFRmw2buauFw-rqjx2Sz8zi5bHxCN9gm-v-_5C9dNLwY</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Rhimi, Moez</creator><creator>Aghajari, Nushin</creator><creator>Jaouadi, Bassem</creator><creator>Juy, Michel</creator><creator>Boudebbouze, Samira</creator><creator>Maguin, Emmanuelle</creator><creator>Haser, Richard</creator><creator>Bejar, Samir</creator><general>Elsevier SAS</general><general>Elsevier Masson</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5452-3382</orcidid><orcidid>https://orcid.org/0000-0002-2245-2679</orcidid></search><sort><creationdate>20091201</creationdate><title>Exploring the acidotolerance of β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion</title><author>Rhimi, Moez ; Aghajari, Nushin ; Jaouadi, Bassem ; Juy, Michel ; Boudebbouze, Samira ; Maguin, Emmanuelle ; Haser, Richard ; Bejar, Samir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-442b2c2c3263acde668ee6c37ba2d0230abcbad44ee46aa291787670e3af18973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acidotolerance</topic><topic>beta-Galactosidase - genetics</topic><topic>beta-Galactosidase - isolation & purification</topic><topic>beta-Galactosidase - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biotransformation</topic><topic>Cloning, Molecular</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Genes, Bacterial</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis - drug effects</topic><topic>Lac Operon</topic><topic>Lactobacillus delbrueckii - enzymology</topic><topic>Lactobacillus delbrueckii - genetics</topic><topic>Lactose - metabolism</topic><topic>Lactose hydrolysis</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Molecular modeling</topic><topic>Sequence Analysis, DNA</topic><topic>Site-directed mutagenesis</topic><topic>Temperature</topic><topic>β-Galactosidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rhimi, Moez</creatorcontrib><creatorcontrib>Aghajari, Nushin</creatorcontrib><creatorcontrib>Jaouadi, Bassem</creatorcontrib><creatorcontrib>Juy, Michel</creatorcontrib><creatorcontrib>Boudebbouze, Samira</creatorcontrib><creatorcontrib>Maguin, Emmanuelle</creatorcontrib><creatorcontrib>Haser, Richard</creatorcontrib><creatorcontrib>Bejar, Samir</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Research in microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rhimi, Moez</au><au>Aghajari, Nushin</au><au>Jaouadi, Bassem</au><au>Juy, Michel</au><au>Boudebbouze, Samira</au><au>Maguin, Emmanuelle</au><au>Haser, Richard</au><au>Bejar, Samir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the acidotolerance of β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion</atitle><jtitle>Research in microbiology</jtitle><addtitle>Res Microbiol</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>160</volume><issue>10</issue><spage>775</spage><epage>784</epage><pages>775-784</pages><issn>0923-2508</issn><eissn>1769-7123</eissn><eissn>0923-2508</eissn><abstract>The
LacZ gene encoding β-galactosidase from
Lactobacillus delbrueckii subsp.
bulgaricus ATCC 11842 (
L. bulgaricus) was cloned, sequenced and expressed in
Escherichia coli, followed by purification and characterization of the protein. The recombinant enzyme was shown to be a homotetramer and could be distinguished from homologues by its relatively low and broad optimal temperature range, from 35 to 50
°C, coupled with an optimal pH of 5.0–5.5. Remarkably, the E491A mutant showed the same optimal temperature, but displayed an optimal pH at 6.5–7.0. Whilst these β-galactosidases are inhibited by Cu
2+ they require only 1
mM Mn
2+ and 1
mM Co
2+ for optimal activity and thermostability. The wild-type enzyme was remarkably stable at acid pH values when compared to mutant E491A. Kinetic studies demonstrated that the E491A mutation affected catalysis rather than enzyme affinity. Furthermore, the wild-type protein efficiently cleaved lactose extracted from whey; however, in milk the E491A mutant showed the highest lactose bioconversion rate. Thus, these enzymes are interesting at the industrial level for hydrolysis of lactose extracted from whey or milk, and thus could contribute to overcoming the lactose intolerance problem generated by milk products.</abstract><cop>Issy-les-Moulineaux</cop><pub>Elsevier SAS</pub><pmid>19786095</pmid><doi>10.1016/j.resmic.2009.09.004</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5452-3382</orcidid><orcidid>https://orcid.org/0000-0002-2245-2679</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-2508 |
ispartof | Research in microbiology, 2009-12, Vol.160 (10), p.775-784 |
issn | 0923-2508 1769-7123 0923-2508 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02663368v1 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Acidotolerance beta-Galactosidase - genetics beta-Galactosidase - isolation & purification beta-Galactosidase - metabolism Biological and medical sciences Biotransformation Cloning, Molecular Fundamental and applied biological sciences. Psychology Gene Expression Genes, Bacterial Hydrogen-Ion Concentration Hydrolysis - drug effects Lac Operon Lactobacillus delbrueckii - enzymology Lactobacillus delbrueckii - genetics Lactose - metabolism Lactose hydrolysis Life Sciences Microbiology Molecular modeling Sequence Analysis, DNA Site-directed mutagenesis Temperature β-Galactosidase |
title | Exploring the acidotolerance of β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus: an attractive enzyme for lactose bioconversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20acidotolerance%20of%20%CE%B2-galactosidase%20from%20Lactobacillus%20delbrueckii%20subsp.%20bulgaricus:%20an%20attractive%20enzyme%20for%20lactose%20bioconversion&rft.jtitle=Research%20in%20microbiology&rft.au=Rhimi,%20Moez&rft.date=2009-12-01&rft.volume=160&rft.issue=10&rft.spage=775&rft.epage=784&rft.pages=775-784&rft.issn=0923-2508&rft.eissn=1769-7123&rft_id=info:doi/10.1016/j.resmic.2009.09.004&rft_dat=%3Cproquest_hal_p%3E734172676%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734172676&rft_id=info:pmid/19786095&rft_els_id=S0923250809001466&rfr_iscdi=true |