Representing parametric probabilistic models tainted with imprecision

Numerical possibility theory, belief functions have been suggested as useful tools to represent imprecise, vague or incomplete information. They are particularly appropriate in uncertainty analysis where information is typically tainted with imprecision or incompleteness. Based on their experience o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuzzy sets and systems 2008-08, Vol.159 (15), p.1913-1928
Hauptverfasser: Baudrit, C., Dubois, D., Perrot, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1928
container_issue 15
container_start_page 1913
container_title Fuzzy sets and systems
container_volume 159
creator Baudrit, C.
Dubois, D.
Perrot, N.
description Numerical possibility theory, belief functions have been suggested as useful tools to represent imprecise, vague or incomplete information. They are particularly appropriate in uncertainty analysis where information is typically tainted with imprecision or incompleteness. Based on their experience or their knowledge about a random phenomenon, experts can sometimes provide a class of distributions without being able to precisely specify the parameters of a probability model. Frequentists use two-dimensional Monte-Carlo simulation to account for imprecision associated with the parameters of probability models. They hence hope to discover how variability and imprecision interact. This paper presents the limitations and disadvantages of this approach and propose a fuzzy random variable approach to treat this kind of knowledge.
doi_str_mv 10.1016/j.fss.2008.02.013
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02663348v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165011408000973</els_id><sourcerecordid>S0165011408000973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-c68ffc6d5b679a7bef38a69ed421c0bb1bc6ae032bb7bbb2bf240caccea734ea3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNtePew6SbbZLZ5KqR9QEETPIcnO2in7RRIq_ntTKh49zQfvMzAPY7ccCg5c3e-LNoRCANQFiAK4PGMzXlciVzXwczZLmUUOnJeX7CqEPUDqFczY5g0njwGHSMNnNhlveoyeXDb50RpLHYWYpn5ssAtZNDREbLIviruM-kQ6CjQO1-yiNV3Am986Zx-Pm_f1c759fXpZr7a5k5LH3Km6bZ1qFlZVS1NZbGVt1BKbUnAH1nLrlEGQwtrKWitsK0pwxjk0lSzRyDm7O93dmU5Pnnrjv_VoSD-vtvq4A6GUlGV94CnLT1nnxxA8tn8AB310pvc6OdNHZ4nTyVliHk5MehYPhF4HRzg4bCi9GnUz0j_0D7gWdsU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Representing parametric probabilistic models tainted with imprecision</title><source>Access via ScienceDirect (Elsevier)</source><creator>Baudrit, C. ; Dubois, D. ; Perrot, N.</creator><creatorcontrib>Baudrit, C. ; Dubois, D. ; Perrot, N.</creatorcontrib><description>Numerical possibility theory, belief functions have been suggested as useful tools to represent imprecise, vague or incomplete information. They are particularly appropriate in uncertainty analysis where information is typically tainted with imprecision or incompleteness. Based on their experience or their knowledge about a random phenomenon, experts can sometimes provide a class of distributions without being able to precisely specify the parameters of a probability model. Frequentists use two-dimensional Monte-Carlo simulation to account for imprecision associated with the parameters of probability models. They hence hope to discover how variability and imprecision interact. This paper presents the limitations and disadvantages of this approach and propose a fuzzy random variable approach to treat this kind of knowledge.</description><identifier>ISSN: 0165-0114</identifier><identifier>EISSN: 1872-6801</identifier><identifier>DOI: 10.1016/j.fss.2008.02.013</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Belief functions ; Chemical and Process Engineering ; Computer Science ; Engineering Sciences ; Food engineering ; Fuzzy random variable ; Imprecise probabilities ; Life Sciences ; Monte-Carlo 2D ; Possibility ; Probability-Boxes</subject><ispartof>Fuzzy sets and systems, 2008-08, Vol.159 (15), p.1913-1928</ispartof><rights>2008 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-c68ffc6d5b679a7bef38a69ed421c0bb1bc6ae032bb7bbb2bf240caccea734ea3</citedby><cites>FETCH-LOGICAL-c331t-c68ffc6d5b679a7bef38a69ed421c0bb1bc6ae032bb7bbb2bf240caccea734ea3</cites><orcidid>0000-0003-4320-3345 ; 0000-0003-3795-0838 ; 0000-0002-6505-2536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fss.2008.02.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02663348$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Baudrit, C.</creatorcontrib><creatorcontrib>Dubois, D.</creatorcontrib><creatorcontrib>Perrot, N.</creatorcontrib><title>Representing parametric probabilistic models tainted with imprecision</title><title>Fuzzy sets and systems</title><description>Numerical possibility theory, belief functions have been suggested as useful tools to represent imprecise, vague or incomplete information. They are particularly appropriate in uncertainty analysis where information is typically tainted with imprecision or incompleteness. Based on their experience or their knowledge about a random phenomenon, experts can sometimes provide a class of distributions without being able to precisely specify the parameters of a probability model. Frequentists use two-dimensional Monte-Carlo simulation to account for imprecision associated with the parameters of probability models. They hence hope to discover how variability and imprecision interact. This paper presents the limitations and disadvantages of this approach and propose a fuzzy random variable approach to treat this kind of knowledge.</description><subject>Belief functions</subject><subject>Chemical and Process Engineering</subject><subject>Computer Science</subject><subject>Engineering Sciences</subject><subject>Food engineering</subject><subject>Fuzzy random variable</subject><subject>Imprecise probabilities</subject><subject>Life Sciences</subject><subject>Monte-Carlo 2D</subject><subject>Possibility</subject><subject>Probability-Boxes</subject><issn>0165-0114</issn><issn>1872-6801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNtePew6SbbZLZ5KqR9QEETPIcnO2in7RRIq_ntTKh49zQfvMzAPY7ccCg5c3e-LNoRCANQFiAK4PGMzXlciVzXwczZLmUUOnJeX7CqEPUDqFczY5g0njwGHSMNnNhlveoyeXDb50RpLHYWYpn5ssAtZNDREbLIviruM-kQ6CjQO1-yiNV3Am986Zx-Pm_f1c759fXpZr7a5k5LH3Km6bZ1qFlZVS1NZbGVt1BKbUnAH1nLrlEGQwtrKWitsK0pwxjk0lSzRyDm7O93dmU5Pnnrjv_VoSD-vtvq4A6GUlGV94CnLT1nnxxA8tn8AB310pvc6OdNHZ4nTyVliHk5MehYPhF4HRzg4bCi9GnUz0j_0D7gWdsU</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Baudrit, C.</creator><creator>Dubois, D.</creator><creator>Perrot, N.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4320-3345</orcidid><orcidid>https://orcid.org/0000-0003-3795-0838</orcidid><orcidid>https://orcid.org/0000-0002-6505-2536</orcidid></search><sort><creationdate>20080801</creationdate><title>Representing parametric probabilistic models tainted with imprecision</title><author>Baudrit, C. ; Dubois, D. ; Perrot, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-c68ffc6d5b679a7bef38a69ed421c0bb1bc6ae032bb7bbb2bf240caccea734ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Belief functions</topic><topic>Chemical and Process Engineering</topic><topic>Computer Science</topic><topic>Engineering Sciences</topic><topic>Food engineering</topic><topic>Fuzzy random variable</topic><topic>Imprecise probabilities</topic><topic>Life Sciences</topic><topic>Monte-Carlo 2D</topic><topic>Possibility</topic><topic>Probability-Boxes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baudrit, C.</creatorcontrib><creatorcontrib>Dubois, D.</creatorcontrib><creatorcontrib>Perrot, N.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Fuzzy sets and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baudrit, C.</au><au>Dubois, D.</au><au>Perrot, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representing parametric probabilistic models tainted with imprecision</atitle><jtitle>Fuzzy sets and systems</jtitle><date>2008-08-01</date><risdate>2008</risdate><volume>159</volume><issue>15</issue><spage>1913</spage><epage>1928</epage><pages>1913-1928</pages><issn>0165-0114</issn><eissn>1872-6801</eissn><abstract>Numerical possibility theory, belief functions have been suggested as useful tools to represent imprecise, vague or incomplete information. They are particularly appropriate in uncertainty analysis where information is typically tainted with imprecision or incompleteness. Based on their experience or their knowledge about a random phenomenon, experts can sometimes provide a class of distributions without being able to precisely specify the parameters of a probability model. Frequentists use two-dimensional Monte-Carlo simulation to account for imprecision associated with the parameters of probability models. They hence hope to discover how variability and imprecision interact. This paper presents the limitations and disadvantages of this approach and propose a fuzzy random variable approach to treat this kind of knowledge.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.fss.2008.02.013</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4320-3345</orcidid><orcidid>https://orcid.org/0000-0003-3795-0838</orcidid><orcidid>https://orcid.org/0000-0002-6505-2536</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0165-0114
ispartof Fuzzy sets and systems, 2008-08, Vol.159 (15), p.1913-1928
issn 0165-0114
1872-6801
language eng
recordid cdi_hal_primary_oai_HAL_hal_02663348v1
source Access via ScienceDirect (Elsevier)
subjects Belief functions
Chemical and Process Engineering
Computer Science
Engineering Sciences
Food engineering
Fuzzy random variable
Imprecise probabilities
Life Sciences
Monte-Carlo 2D
Possibility
Probability-Boxes
title Representing parametric probabilistic models tainted with imprecision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representing%20parametric%20probabilistic%20models%20tainted%20with%20imprecision&rft.jtitle=Fuzzy%20sets%20and%20systems&rft.au=Baudrit,%20C.&rft.date=2008-08-01&rft.volume=159&rft.issue=15&rft.spage=1913&rft.epage=1928&rft.pages=1913-1928&rft.issn=0165-0114&rft.eissn=1872-6801&rft_id=info:doi/10.1016/j.fss.2008.02.013&rft_dat=%3Celsevier_hal_p%3ES0165011408000973%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0165011408000973&rfr_iscdi=true