Genetic selection for fast growth generates bone architecture characterised by enhanced periosteal expansion and limited consolidation of the cortices but a diminution in the early responses to mechanical loading
Abstract Bone strength is, in part, dependent on a mechanical input that regulates the (re)modelling of skeletal elements to an appropriate size and architecture to resist fracture during habitual use. The rate of longitudinal bone growth in juveniles can also affect fracture incidence in adulthood,...
Gespeichert in:
Veröffentlicht in: | Bone (New York, N.Y.) N.Y.), 2009-08, Vol.45 (2), p.357-366 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 366 |
---|---|
container_issue | 2 |
container_start_page | 357 |
container_title | Bone (New York, N.Y.) |
container_volume | 45 |
creator | Rawlinson, Simon C.F Murray, Dianne H Mosley, John R Wright, Chris D.P Bredl, John C Saxon, Leanne K Loveridge, Nigel Leterrier, Christine Constantin, Paul Farquharson, Colin Pitsillides, Andrew A |
description | Abstract Bone strength is, in part, dependent on a mechanical input that regulates the (re)modelling of skeletal elements to an appropriate size and architecture to resist fracture during habitual use. The rate of longitudinal bone growth in juveniles can also affect fracture incidence in adulthood, suggesting an influence of growth rate on later bone quality. We have compared the effects of fast and slow growth on bone strength and architecture in the tibiotarsi of embryonic and juvenile birds. The loading-related biochemical responses (intracellular G6PD activity and NO release) to mechanical load were also determined. Further, we have analysed the proliferation and differentiation characteristics of primary tibiotarsal osteoblasts from fast and slow-growing strains. We found that bones from chicks with divergent growth rates display equal resistance to applied loads, but weight-correction revealed that the bones from juvenile fast growth birds are weaker, with reduced stiffness and lower resistance to fracture. Primary osteoblasts from slow-growing juvenile birds proliferated more rapidly and had lower alkaline phosphatase activity. Bones from fast-growing embryonic chicks display rapid radial expansion and incomplete osteonal infilling but, importantly, lack mechanical responsiveness. These findings are further evidence that the ability to respond to mechanical inputs is crucial to adapt skeletal architecture to generate a functionally appropriate bone structure and that fast embryonic and juvenile growth rates may predispose bone to particular architectures with increased fragility in the adult. |
doi_str_mv | 10.1016/j.bone.2009.04.243 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02661462v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S8756328209015506</els_id><sourcerecordid>67458377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-1fbd316a2249849ee07e522410a71829db3ccb2af34ca60cf1d11896306a72753</originalsourceid><addsrcrecordid>eNqFks2O0zAUhSMEYsrAC7BA3oDEosU_iZ1ICGk0ghmkSiyAteU4N41LahfbGeh78kDctNUgsYCVf_Sde699TlE8Z3TFKJNvtqs2eFhxSpsVLVe8FA-KBauVWHIlxcNiUatKLgWv-UXxJKUtpVQ0ij0uLlhT0qZialH8ugEP2VmSYASbXfCkD5H0JmWyieFHHsgGiWgyJDK3IybawWVkpwjEDiYamyG6BB1pDwT8YLzF_R7vQspgRgI_98anubTxHRndDuUdscGnMLrOHJuGnuQB64WIw8ytpkwM6ZD10xFw_giAieOBREh7lCOXA9kBTuGdxU5jMJ3zm6fFo96MCZ6d18vi64f3X65vl-tPNx-vr9ZLW5V1XrK-7QSThvOyqcsGgCqo8MCoUazmTdcKa1tuelFaI6ntWcdY3UhBpVFcVeKyeH2qO5hR76PbmXjQwTh9e7XW8x3lUrJS8juG7KsTu4_h-wQp651LFsbReAhT0lKVVS2U-i_I0XpasxJBfgJtDClF6O9HYFTPAdFbPTum54BoWmoMCIpenKtP7Q66P5JzIhB4eQZMwi_tI9rp0j3HEVGczm9_e-IAP_jOQdTJOpitdxHDobvg_j3Hu7_kdnRHE7_BAdI2TNGjdZrpxDXVn-coz0mmDWVVRaX4DUmT8sQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20160814</pqid></control><display><type>article</type><title>Genetic selection for fast growth generates bone architecture characterised by enhanced periosteal expansion and limited consolidation of the cortices but a diminution in the early responses to mechanical loading</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rawlinson, Simon C.F ; Murray, Dianne H ; Mosley, John R ; Wright, Chris D.P ; Bredl, John C ; Saxon, Leanne K ; Loveridge, Nigel ; Leterrier, Christine ; Constantin, Paul ; Farquharson, Colin ; Pitsillides, Andrew A</creator><creatorcontrib>Rawlinson, Simon C.F ; Murray, Dianne H ; Mosley, John R ; Wright, Chris D.P ; Bredl, John C ; Saxon, Leanne K ; Loveridge, Nigel ; Leterrier, Christine ; Constantin, Paul ; Farquharson, Colin ; Pitsillides, Andrew A</creatorcontrib><description>Abstract Bone strength is, in part, dependent on a mechanical input that regulates the (re)modelling of skeletal elements to an appropriate size and architecture to resist fracture during habitual use. The rate of longitudinal bone growth in juveniles can also affect fracture incidence in adulthood, suggesting an influence of growth rate on later bone quality. We have compared the effects of fast and slow growth on bone strength and architecture in the tibiotarsi of embryonic and juvenile birds. The loading-related biochemical responses (intracellular G6PD activity and NO release) to mechanical load were also determined. Further, we have analysed the proliferation and differentiation characteristics of primary tibiotarsal osteoblasts from fast and slow-growing strains. We found that bones from chicks with divergent growth rates display equal resistance to applied loads, but weight-correction revealed that the bones from juvenile fast growth birds are weaker, with reduced stiffness and lower resistance to fracture. Primary osteoblasts from slow-growing juvenile birds proliferated more rapidly and had lower alkaline phosphatase activity. Bones from fast-growing embryonic chicks display rapid radial expansion and incomplete osteonal infilling but, importantly, lack mechanical responsiveness. These findings are further evidence that the ability to respond to mechanical inputs is crucial to adapt skeletal architecture to generate a functionally appropriate bone structure and that fast embryonic and juvenile growth rates may predispose bone to particular architectures with increased fragility in the adult.</description><identifier>ISSN: 8756-3282</identifier><identifier>EISSN: 1873-2763</identifier><identifier>EISSN: 8756-3282</identifier><identifier>DOI: 10.1016/j.bone.2009.04.243</identifier><identifier>PMID: 19409517</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject><![CDATA[Animals ; Biological and medical sciences ; Biomechanical Phenomena ; Bone ; Bone Development - genetics ; Calibration ; Cell Count ; Cell Differentiation ; Cell Proliferation ; Chick Embryo ; Chickens ; Computer Science ; Cortical porosity ; Diaphyses - anatomy & histology ; Diaphyses - growth & development ; Fundamental and applied biological sciences. Psychology ; Glucosephosphate Dehydrogenase - metabolism ; Life Sciences ; Mechanical load ; Nitric Oxide - metabolism ; Orthopedics ; Osteoblasts ; Osteoblasts - cytology ; Osteoblasts - enzymology ; Osteocytes - cytology ; Periosteum - anatomy & histology ; Periosteum - growth & development ; Periosteum - physiology ; Selection, Genetic ; Stress, Mechanical ; Tibia - anatomy & histology ; Tibia - growth & development ; Vertebrates: anatomy and physiology, studies on body, several organs or systems ; Weight-Bearing]]></subject><ispartof>Bone (New York, N.Y.), 2009-08, Vol.45 (2), p.357-366</ispartof><rights>Elsevier Inc.</rights><rights>2009 Elsevier Inc.</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-1fbd316a2249849ee07e522410a71829db3ccb2af34ca60cf1d11896306a72753</citedby><cites>FETCH-LOGICAL-c548t-1fbd316a2249849ee07e522410a71829db3ccb2af34ca60cf1d11896306a72753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S8756328209015506$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21737205$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19409517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02661462$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rawlinson, Simon C.F</creatorcontrib><creatorcontrib>Murray, Dianne H</creatorcontrib><creatorcontrib>Mosley, John R</creatorcontrib><creatorcontrib>Wright, Chris D.P</creatorcontrib><creatorcontrib>Bredl, John C</creatorcontrib><creatorcontrib>Saxon, Leanne K</creatorcontrib><creatorcontrib>Loveridge, Nigel</creatorcontrib><creatorcontrib>Leterrier, Christine</creatorcontrib><creatorcontrib>Constantin, Paul</creatorcontrib><creatorcontrib>Farquharson, Colin</creatorcontrib><creatorcontrib>Pitsillides, Andrew A</creatorcontrib><title>Genetic selection for fast growth generates bone architecture characterised by enhanced periosteal expansion and limited consolidation of the cortices but a diminution in the early responses to mechanical loading</title><title>Bone (New York, N.Y.)</title><addtitle>Bone</addtitle><description>Abstract Bone strength is, in part, dependent on a mechanical input that regulates the (re)modelling of skeletal elements to an appropriate size and architecture to resist fracture during habitual use. The rate of longitudinal bone growth in juveniles can also affect fracture incidence in adulthood, suggesting an influence of growth rate on later bone quality. We have compared the effects of fast and slow growth on bone strength and architecture in the tibiotarsi of embryonic and juvenile birds. The loading-related biochemical responses (intracellular G6PD activity and NO release) to mechanical load were also determined. Further, we have analysed the proliferation and differentiation characteristics of primary tibiotarsal osteoblasts from fast and slow-growing strains. We found that bones from chicks with divergent growth rates display equal resistance to applied loads, but weight-correction revealed that the bones from juvenile fast growth birds are weaker, with reduced stiffness and lower resistance to fracture. Primary osteoblasts from slow-growing juvenile birds proliferated more rapidly and had lower alkaline phosphatase activity. Bones from fast-growing embryonic chicks display rapid radial expansion and incomplete osteonal infilling but, importantly, lack mechanical responsiveness. These findings are further evidence that the ability to respond to mechanical inputs is crucial to adapt skeletal architecture to generate a functionally appropriate bone structure and that fast embryonic and juvenile growth rates may predispose bone to particular architectures with increased fragility in the adult.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Bone</subject><subject>Bone Development - genetics</subject><subject>Calibration</subject><subject>Cell Count</subject><subject>Cell Differentiation</subject><subject>Cell Proliferation</subject><subject>Chick Embryo</subject><subject>Chickens</subject><subject>Computer Science</subject><subject>Cortical porosity</subject><subject>Diaphyses - anatomy & histology</subject><subject>Diaphyses - growth & development</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucosephosphate Dehydrogenase - metabolism</subject><subject>Life Sciences</subject><subject>Mechanical load</subject><subject>Nitric Oxide - metabolism</subject><subject>Orthopedics</subject><subject>Osteoblasts</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - enzymology</subject><subject>Osteocytes - cytology</subject><subject>Periosteum - anatomy & histology</subject><subject>Periosteum - growth & development</subject><subject>Periosteum - physiology</subject><subject>Selection, Genetic</subject><subject>Stress, Mechanical</subject><subject>Tibia - anatomy & histology</subject><subject>Tibia - growth & development</subject><subject>Vertebrates: anatomy and physiology, studies on body, several organs or systems</subject><subject>Weight-Bearing</subject><issn>8756-3282</issn><issn>1873-2763</issn><issn>8756-3282</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks2O0zAUhSMEYsrAC7BA3oDEosU_iZ1ICGk0ghmkSiyAteU4N41LahfbGeh78kDctNUgsYCVf_Sde699TlE8Z3TFKJNvtqs2eFhxSpsVLVe8FA-KBauVWHIlxcNiUatKLgWv-UXxJKUtpVQ0ij0uLlhT0qZialH8ugEP2VmSYASbXfCkD5H0JmWyieFHHsgGiWgyJDK3IybawWVkpwjEDiYamyG6BB1pDwT8YLzF_R7vQspgRgI_98anubTxHRndDuUdscGnMLrOHJuGnuQB64WIw8ytpkwM6ZD10xFw_giAieOBREh7lCOXA9kBTuGdxU5jMJ3zm6fFo96MCZ6d18vi64f3X65vl-tPNx-vr9ZLW5V1XrK-7QSThvOyqcsGgCqo8MCoUazmTdcKa1tuelFaI6ntWcdY3UhBpVFcVeKyeH2qO5hR76PbmXjQwTh9e7XW8x3lUrJS8juG7KsTu4_h-wQp651LFsbReAhT0lKVVS2U-i_I0XpasxJBfgJtDClF6O9HYFTPAdFbPTum54BoWmoMCIpenKtP7Q66P5JzIhB4eQZMwi_tI9rp0j3HEVGczm9_e-IAP_jOQdTJOpitdxHDobvg_j3Hu7_kdnRHE7_BAdI2TNGjdZrpxDXVn-coz0mmDWVVRaX4DUmT8sQ</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Rawlinson, Simon C.F</creator><creator>Murray, Dianne H</creator><creator>Mosley, John R</creator><creator>Wright, Chris D.P</creator><creator>Bredl, John C</creator><creator>Saxon, Leanne K</creator><creator>Loveridge, Nigel</creator><creator>Leterrier, Christine</creator><creator>Constantin, Paul</creator><creator>Farquharson, Colin</creator><creator>Pitsillides, Andrew A</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20090801</creationdate><title>Genetic selection for fast growth generates bone architecture characterised by enhanced periosteal expansion and limited consolidation of the cortices but a diminution in the early responses to mechanical loading</title><author>Rawlinson, Simon C.F ; Murray, Dianne H ; Mosley, John R ; Wright, Chris D.P ; Bredl, John C ; Saxon, Leanne K ; Loveridge, Nigel ; Leterrier, Christine ; Constantin, Paul ; Farquharson, Colin ; Pitsillides, Andrew A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-1fbd316a2249849ee07e522410a71829db3ccb2af34ca60cf1d11896306a72753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Bone</topic><topic>Bone Development - genetics</topic><topic>Calibration</topic><topic>Cell Count</topic><topic>Cell Differentiation</topic><topic>Cell Proliferation</topic><topic>Chick Embryo</topic><topic>Chickens</topic><topic>Computer Science</topic><topic>Cortical porosity</topic><topic>Diaphyses - anatomy & histology</topic><topic>Diaphyses - growth & development</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucosephosphate Dehydrogenase - metabolism</topic><topic>Life Sciences</topic><topic>Mechanical load</topic><topic>Nitric Oxide - metabolism</topic><topic>Orthopedics</topic><topic>Osteoblasts</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - enzymology</topic><topic>Osteocytes - cytology</topic><topic>Periosteum - anatomy & histology</topic><topic>Periosteum - growth & development</topic><topic>Periosteum - physiology</topic><topic>Selection, Genetic</topic><topic>Stress, Mechanical</topic><topic>Tibia - anatomy & histology</topic><topic>Tibia - growth & development</topic><topic>Vertebrates: anatomy and physiology, studies on body, several organs or systems</topic><topic>Weight-Bearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rawlinson, Simon C.F</creatorcontrib><creatorcontrib>Murray, Dianne H</creatorcontrib><creatorcontrib>Mosley, John R</creatorcontrib><creatorcontrib>Wright, Chris D.P</creatorcontrib><creatorcontrib>Bredl, John C</creatorcontrib><creatorcontrib>Saxon, Leanne K</creatorcontrib><creatorcontrib>Loveridge, Nigel</creatorcontrib><creatorcontrib>Leterrier, Christine</creatorcontrib><creatorcontrib>Constantin, Paul</creatorcontrib><creatorcontrib>Farquharson, Colin</creatorcontrib><creatorcontrib>Pitsillides, Andrew A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bone (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rawlinson, Simon C.F</au><au>Murray, Dianne H</au><au>Mosley, John R</au><au>Wright, Chris D.P</au><au>Bredl, John C</au><au>Saxon, Leanne K</au><au>Loveridge, Nigel</au><au>Leterrier, Christine</au><au>Constantin, Paul</au><au>Farquharson, Colin</au><au>Pitsillides, Andrew A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic selection for fast growth generates bone architecture characterised by enhanced periosteal expansion and limited consolidation of the cortices but a diminution in the early responses to mechanical loading</atitle><jtitle>Bone (New York, N.Y.)</jtitle><addtitle>Bone</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>45</volume><issue>2</issue><spage>357</spage><epage>366</epage><pages>357-366</pages><issn>8756-3282</issn><eissn>1873-2763</eissn><eissn>8756-3282</eissn><abstract>Abstract Bone strength is, in part, dependent on a mechanical input that regulates the (re)modelling of skeletal elements to an appropriate size and architecture to resist fracture during habitual use. The rate of longitudinal bone growth in juveniles can also affect fracture incidence in adulthood, suggesting an influence of growth rate on later bone quality. We have compared the effects of fast and slow growth on bone strength and architecture in the tibiotarsi of embryonic and juvenile birds. The loading-related biochemical responses (intracellular G6PD activity and NO release) to mechanical load were also determined. Further, we have analysed the proliferation and differentiation characteristics of primary tibiotarsal osteoblasts from fast and slow-growing strains. We found that bones from chicks with divergent growth rates display equal resistance to applied loads, but weight-correction revealed that the bones from juvenile fast growth birds are weaker, with reduced stiffness and lower resistance to fracture. Primary osteoblasts from slow-growing juvenile birds proliferated more rapidly and had lower alkaline phosphatase activity. Bones from fast-growing embryonic chicks display rapid radial expansion and incomplete osteonal infilling but, importantly, lack mechanical responsiveness. These findings are further evidence that the ability to respond to mechanical inputs is crucial to adapt skeletal architecture to generate a functionally appropriate bone structure and that fast embryonic and juvenile growth rates may predispose bone to particular architectures with increased fragility in the adult.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>19409517</pmid><doi>10.1016/j.bone.2009.04.243</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-3282 |
ispartof | Bone (New York, N.Y.), 2009-08, Vol.45 (2), p.357-366 |
issn | 8756-3282 1873-2763 8756-3282 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02661462v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Biological and medical sciences Biomechanical Phenomena Bone Bone Development - genetics Calibration Cell Count Cell Differentiation Cell Proliferation Chick Embryo Chickens Computer Science Cortical porosity Diaphyses - anatomy & histology Diaphyses - growth & development Fundamental and applied biological sciences. Psychology Glucosephosphate Dehydrogenase - metabolism Life Sciences Mechanical load Nitric Oxide - metabolism Orthopedics Osteoblasts Osteoblasts - cytology Osteoblasts - enzymology Osteocytes - cytology Periosteum - anatomy & histology Periosteum - growth & development Periosteum - physiology Selection, Genetic Stress, Mechanical Tibia - anatomy & histology Tibia - growth & development Vertebrates: anatomy and physiology, studies on body, several organs or systems Weight-Bearing |
title | Genetic selection for fast growth generates bone architecture characterised by enhanced periosteal expansion and limited consolidation of the cortices but a diminution in the early responses to mechanical loading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20selection%20for%20fast%20growth%20generates%20bone%20architecture%20characterised%20by%20enhanced%20periosteal%20expansion%20and%20limited%20consolidation%20of%20the%20cortices%20but%20a%20diminution%20in%20the%20early%20responses%20to%20mechanical%20loading&rft.jtitle=Bone%20(New%20York,%20N.Y.)&rft.au=Rawlinson,%20Simon%20C.F&rft.date=2009-08-01&rft.volume=45&rft.issue=2&rft.spage=357&rft.epage=366&rft.pages=357-366&rft.issn=8756-3282&rft.eissn=1873-2763&rft_id=info:doi/10.1016/j.bone.2009.04.243&rft_dat=%3Cproquest_hal_p%3E67458377%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20160814&rft_id=info:pmid/19409517&rft_els_id=1_s2_0_S8756328209015506&rfr_iscdi=true |