Complexity results and algorithms for possibilistic influence diagrams

In this article we present the framework of Possibilistic Influence Diagrams (PID), which allows to model in a compact form problems of sequential decision making under uncertainty, when only ordinal data on transitions likelihood or preferences are available. The graphical part of a PID is exactly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence 2008-05, Vol.172 (8), p.1018-1044
Hauptverfasser: Garcia, Laurent, Sabbadin, Régis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1044
container_issue 8
container_start_page 1018
container_title Artificial intelligence
container_volume 172
creator Garcia, Laurent
Sabbadin, Régis
description In this article we present the framework of Possibilistic Influence Diagrams (PID), which allows to model in a compact form problems of sequential decision making under uncertainty, when only ordinal data on transitions likelihood or preferences are available. The graphical part of a PID is exactly the same as that of usual influence diagrams, however the semantics differ. Transition likelihoods are expressed as possibility distributions and rewards are here considered as satisfaction degrees. Expected utility is then replaced by anyone of the two possibilistic qualitative utility criteria (optimistic and pessimistic) for evaluating strategies in a PID. We then describe decision tree-based methods for evaluating PID and computing optimal strategies and we study the computational complexity of PID optimisation problems for both cases. Finally, we propose a dedicated variable elimination algorithm that can be applied to both optimistic and pessimistic cases for solving PID.
doi_str_mv 10.1016/j.artint.2007.11.008
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02661247v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0004370207002081</els_id><sourcerecordid>oai_HAL_hal_02661247v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-5bbea73dd4074f81697ce6ee3a7225e2b940522b811224e16b943308c968b5fb3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwDRiyMDAk3NlJnCxIVUUpUiUWmC3HcVpXTlLZaUW_PY6COjKd7um9-_Mj5BEhQcD8ZZ9IN5huSCgATxATgOKKzLDgNOYlxWsyA4A0ZhzoLbnzfh9aVpY4I6tl3x6s_jHDOXLaH-3gI9nVkbTb3plh1_qo6V106L03lbHGD0ZFpmvsUXdKR7WRWydbf09uGmm9fvirc_K9evtaruPN5_vHcrGJVdg9xFlVaclZXafA06bAvORK51ozySnNNK3KFDJKqwKR0lRjHgTGoFBlXlRZU7E5eZ7m7qQVB2da6c6il0asFxsxakDzHGnKTxi86eRVLlzvdHMJIIiRm9iLiZsYuQlEEbiF2NMUO0ivpG2c7JTxlywFmvECWfC9Tj4d_j0Z7YRXZoRSG6fVIOre_L_oFxmehS0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complexity results and algorithms for possibilistic influence diagrams</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Garcia, Laurent ; Sabbadin, Régis</creator><creatorcontrib>Garcia, Laurent ; Sabbadin, Régis</creatorcontrib><description>In this article we present the framework of Possibilistic Influence Diagrams (PID), which allows to model in a compact form problems of sequential decision making under uncertainty, when only ordinal data on transitions likelihood or preferences are available. The graphical part of a PID is exactly the same as that of usual influence diagrams, however the semantics differ. Transition likelihoods are expressed as possibility distributions and rewards are here considered as satisfaction degrees. Expected utility is then replaced by anyone of the two possibilistic qualitative utility criteria (optimistic and pessimistic) for evaluating strategies in a PID. We then describe decision tree-based methods for evaluating PID and computing optimal strategies and we study the computational complexity of PID optimisation problems for both cases. Finally, we propose a dedicated variable elimination algorithm that can be applied to both optimistic and pessimistic cases for solving PID.</description><identifier>ISSN: 0004-3702</identifier><identifier>EISSN: 1872-7921</identifier><identifier>DOI: 10.1016/j.artint.2007.11.008</identifier><identifier>CODEN: AINTBB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Causal networks ; Computer Science ; Computer science; control theory; systems ; Decision theory ; Decision theory. Utility theory ; Exact sciences and technology ; Influence diagrams ; Learning and adaptive systems ; Mathematics ; Operational research and scientific management ; Operational research. Management science ; Possibility theory ; Theoretical computing</subject><ispartof>Artificial intelligence, 2008-05, Vol.172 (8), p.1018-1044</ispartof><rights>2008 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-5bbea73dd4074f81697ce6ee3a7225e2b940522b811224e16b943308c968b5fb3</citedby><cites>FETCH-LOGICAL-c370t-5bbea73dd4074f81697ce6ee3a7225e2b940522b811224e16b943308c968b5fb3</cites><orcidid>0000-0001-8921-2488 ; 0000-0002-6286-1821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0004370207002081$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20257813$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02661247$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, Laurent</creatorcontrib><creatorcontrib>Sabbadin, Régis</creatorcontrib><title>Complexity results and algorithms for possibilistic influence diagrams</title><title>Artificial intelligence</title><description>In this article we present the framework of Possibilistic Influence Diagrams (PID), which allows to model in a compact form problems of sequential decision making under uncertainty, when only ordinal data on transitions likelihood or preferences are available. The graphical part of a PID is exactly the same as that of usual influence diagrams, however the semantics differ. Transition likelihoods are expressed as possibility distributions and rewards are here considered as satisfaction degrees. Expected utility is then replaced by anyone of the two possibilistic qualitative utility criteria (optimistic and pessimistic) for evaluating strategies in a PID. We then describe decision tree-based methods for evaluating PID and computing optimal strategies and we study the computational complexity of PID optimisation problems for both cases. Finally, we propose a dedicated variable elimination algorithm that can be applied to both optimistic and pessimistic cases for solving PID.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Causal networks</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Decision theory</subject><subject>Decision theory. Utility theory</subject><subject>Exact sciences and technology</subject><subject>Influence diagrams</subject><subject>Learning and adaptive systems</subject><subject>Mathematics</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Possibility theory</subject><subject>Theoretical computing</subject><issn>0004-3702</issn><issn>1872-7921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwDRiyMDAk3NlJnCxIVUUpUiUWmC3HcVpXTlLZaUW_PY6COjKd7um9-_Mj5BEhQcD8ZZ9IN5huSCgATxATgOKKzLDgNOYlxWsyA4A0ZhzoLbnzfh9aVpY4I6tl3x6s_jHDOXLaH-3gI9nVkbTb3plh1_qo6V106L03lbHGD0ZFpmvsUXdKR7WRWydbf09uGmm9fvirc_K9evtaruPN5_vHcrGJVdg9xFlVaclZXafA06bAvORK51ozySnNNK3KFDJKqwKR0lRjHgTGoFBlXlRZU7E5eZ7m7qQVB2da6c6il0asFxsxakDzHGnKTxi86eRVLlzvdHMJIIiRm9iLiZsYuQlEEbiF2NMUO0ivpG2c7JTxlywFmvECWfC9Tj4d_j0Z7YRXZoRSG6fVIOre_L_oFxmehS0</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Garcia, Laurent</creator><creator>Sabbadin, Régis</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8921-2488</orcidid><orcidid>https://orcid.org/0000-0002-6286-1821</orcidid></search><sort><creationdate>20080501</creationdate><title>Complexity results and algorithms for possibilistic influence diagrams</title><author>Garcia, Laurent ; Sabbadin, Régis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-5bbea73dd4074f81697ce6ee3a7225e2b940522b811224e16b943308c968b5fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Causal networks</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Decision theory</topic><topic>Decision theory. Utility theory</topic><topic>Exact sciences and technology</topic><topic>Influence diagrams</topic><topic>Learning and adaptive systems</topic><topic>Mathematics</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Possibility theory</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Laurent</creatorcontrib><creatorcontrib>Sabbadin, Régis</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Laurent</au><au>Sabbadin, Régis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity results and algorithms for possibilistic influence diagrams</atitle><jtitle>Artificial intelligence</jtitle><date>2008-05-01</date><risdate>2008</risdate><volume>172</volume><issue>8</issue><spage>1018</spage><epage>1044</epage><pages>1018-1044</pages><issn>0004-3702</issn><eissn>1872-7921</eissn><coden>AINTBB</coden><abstract>In this article we present the framework of Possibilistic Influence Diagrams (PID), which allows to model in a compact form problems of sequential decision making under uncertainty, when only ordinal data on transitions likelihood or preferences are available. The graphical part of a PID is exactly the same as that of usual influence diagrams, however the semantics differ. Transition likelihoods are expressed as possibility distributions and rewards are here considered as satisfaction degrees. Expected utility is then replaced by anyone of the two possibilistic qualitative utility criteria (optimistic and pessimistic) for evaluating strategies in a PID. We then describe decision tree-based methods for evaluating PID and computing optimal strategies and we study the computational complexity of PID optimisation problems for both cases. Finally, we propose a dedicated variable elimination algorithm that can be applied to both optimistic and pessimistic cases for solving PID.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.artint.2007.11.008</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-8921-2488</orcidid><orcidid>https://orcid.org/0000-0002-6286-1821</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-3702
ispartof Artificial intelligence, 2008-05, Vol.172 (8), p.1018-1044
issn 0004-3702
1872-7921
language eng
recordid cdi_hal_primary_oai_HAL_hal_02661247v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Causal networks
Computer Science
Computer science
control theory
systems
Decision theory
Decision theory. Utility theory
Exact sciences and technology
Influence diagrams
Learning and adaptive systems
Mathematics
Operational research and scientific management
Operational research. Management science
Possibility theory
Theoretical computing
title Complexity results and algorithms for possibilistic influence diagrams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A51%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20results%20and%20algorithms%20for%20possibilistic%20influence%20diagrams&rft.jtitle=Artificial%20intelligence&rft.au=Garcia,%20Laurent&rft.date=2008-05-01&rft.volume=172&rft.issue=8&rft.spage=1018&rft.epage=1044&rft.pages=1018-1044&rft.issn=0004-3702&rft.eissn=1872-7921&rft.coden=AINTBB&rft_id=info:doi/10.1016/j.artint.2007.11.008&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02661247v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0004370207002081&rfr_iscdi=true