Data mining to support anaerobic WWTP monitoring

The stable and efficient operation of anaerobic wastewater treatment plants (WWTPs) is a major challenge for monitoring and control systems. Support for distributed anaerobic WWTPs through remotely monitoring their data was investigated in the TELEMAC framework. This paper describes how the accumula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Control engineering practice 2007-08, Vol.15 (8), p.987-999
Hauptverfasser: Dixon, Maurice, Gallop, Julian R., Lambert, Simon C., Lardon, Laurent, Healy, Jerome V., Steyer, Jean-Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 999
container_issue 8
container_start_page 987
container_title Control engineering practice
container_volume 15
creator Dixon, Maurice
Gallop, Julian R.
Lambert, Simon C.
Lardon, Laurent
Healy, Jerome V.
Steyer, Jean-Philippe
description The stable and efficient operation of anaerobic wastewater treatment plants (WWTPs) is a major challenge for monitoring and control systems. Support for distributed anaerobic WWTPs through remotely monitoring their data was investigated in the TELEMAC framework. This paper describes how the accumulating filtered sensor data was mined to contribute to the refining of expert experience for insights into digester states. Visualisation techniques were used to present cluster analyses of digester states. A procedure for determining prediction intervals is described together with its application for volatile fatty acid concentrations; this procedure enables prediction risk assessment.
doi_str_mv 10.1016/j.conengprac.2006.11.010
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02659470v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0967066106002243</els_id><sourcerecordid>S0967066106002243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-d60e1cc87e06e487b1ea2b7594cb04ec4bf682a63eb5c578f302a1c3318ce3853</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwH7IwMCTcxYntjKV8FKkSDEUdLefqFFdtHNmhEv-eVEV0ZDrp9Dzv6V7GEoQMAcX9JiPf2nbdBUNZDiAyxAwQztgIleSpqHh1zkZQCZmCEHjJrmLcwKBWFY4YPJreJDvXunad9D6JX13nQ5-Y1tjga0fJcrl4T3a-db0PA3TNLhqzjfbmd47Zx_PTYjpL528vr9PJPKVC8j5dCbBIpKQFYQsla7Qmr2VZFVRDYamoG6FyI7itSyqlajjkBolzVGS5KvmY3R1zP81Wd8HtTPjW3jg9m8z1YQe5GNIk7HFg1ZGl4GMMtvkTEPShJb3Rp5b0oSWNqIeWBvX2qHYmktk2wbTk4slXssoFyIF7OHJ2-HnvbNCRnG3Jrlyw1OuVd_8f-wEEVIFF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data mining to support anaerobic WWTP monitoring</title><source>Access via ScienceDirect (Elsevier)</source><creator>Dixon, Maurice ; Gallop, Julian R. ; Lambert, Simon C. ; Lardon, Laurent ; Healy, Jerome V. ; Steyer, Jean-Philippe</creator><creatorcontrib>Dixon, Maurice ; Gallop, Julian R. ; Lambert, Simon C. ; Lardon, Laurent ; Healy, Jerome V. ; Steyer, Jean-Philippe</creatorcontrib><description>The stable and efficient operation of anaerobic wastewater treatment plants (WWTPs) is a major challenge for monitoring and control systems. Support for distributed anaerobic WWTPs through remotely monitoring their data was investigated in the TELEMAC framework. This paper describes how the accumulating filtered sensor data was mined to contribute to the refining of expert experience for insights into digester states. Visualisation techniques were used to present cluster analyses of digester states. A procedure for determining prediction intervals is described together with its application for volatile fatty acid concentrations; this procedure enables prediction risk assessment.</description><identifier>ISSN: 0967-0661</identifier><identifier>EISSN: 1873-6939</identifier><identifier>DOI: 10.1016/j.conengprac.2006.11.010</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Environmental Sciences ; Exact sciences and technology ; Industrial metrology. Testing ; Life Sciences ; Mechanical engineering. Machine design ; Pollution ; Prediction interval ; Reactor modelling ; Reactor states ; Waste treatment ; Wastewaters ; Water pollution ; Water treatment and pollution</subject><ispartof>Control engineering practice, 2007-08, Vol.15 (8), p.987-999</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-d60e1cc87e06e487b1ea2b7594cb04ec4bf682a63eb5c578f302a1c3318ce3853</citedby><cites>FETCH-LOGICAL-c473t-d60e1cc87e06e487b1ea2b7594cb04ec4bf682a63eb5c578f302a1c3318ce3853</cites><orcidid>0000-0003-0467-8081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.conengprac.2006.11.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18792607$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02659470$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dixon, Maurice</creatorcontrib><creatorcontrib>Gallop, Julian R.</creatorcontrib><creatorcontrib>Lambert, Simon C.</creatorcontrib><creatorcontrib>Lardon, Laurent</creatorcontrib><creatorcontrib>Healy, Jerome V.</creatorcontrib><creatorcontrib>Steyer, Jean-Philippe</creatorcontrib><title>Data mining to support anaerobic WWTP monitoring</title><title>Control engineering practice</title><description>The stable and efficient operation of anaerobic wastewater treatment plants (WWTPs) is a major challenge for monitoring and control systems. Support for distributed anaerobic WWTPs through remotely monitoring their data was investigated in the TELEMAC framework. This paper describes how the accumulating filtered sensor data was mined to contribute to the refining of expert experience for insights into digester states. Visualisation techniques were used to present cluster analyses of digester states. A procedure for determining prediction intervals is described together with its application for volatile fatty acid concentrations; this procedure enables prediction risk assessment.</description><subject>Applied sciences</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Industrial metrology. Testing</subject><subject>Life Sciences</subject><subject>Mechanical engineering. Machine design</subject><subject>Pollution</subject><subject>Prediction interval</subject><subject>Reactor modelling</subject><subject>Reactor states</subject><subject>Waste treatment</subject><subject>Wastewaters</subject><subject>Water pollution</subject><subject>Water treatment and pollution</subject><issn>0967-0661</issn><issn>1873-6939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwH7IwMCTcxYntjKV8FKkSDEUdLefqFFdtHNmhEv-eVEV0ZDrp9Dzv6V7GEoQMAcX9JiPf2nbdBUNZDiAyxAwQztgIleSpqHh1zkZQCZmCEHjJrmLcwKBWFY4YPJreJDvXunad9D6JX13nQ5-Y1tjga0fJcrl4T3a-db0PA3TNLhqzjfbmd47Zx_PTYjpL528vr9PJPKVC8j5dCbBIpKQFYQsla7Qmr2VZFVRDYamoG6FyI7itSyqlajjkBolzVGS5KvmY3R1zP81Wd8HtTPjW3jg9m8z1YQe5GNIk7HFg1ZGl4GMMtvkTEPShJb3Rp5b0oSWNqIeWBvX2qHYmktk2wbTk4slXssoFyIF7OHJ2-HnvbNCRnG3Jrlyw1OuVd_8f-wEEVIFF</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Dixon, Maurice</creator><creator>Gallop, Julian R.</creator><creator>Lambert, Simon C.</creator><creator>Lardon, Laurent</creator><creator>Healy, Jerome V.</creator><creator>Steyer, Jean-Philippe</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0467-8081</orcidid></search><sort><creationdate>20070801</creationdate><title>Data mining to support anaerobic WWTP monitoring</title><author>Dixon, Maurice ; Gallop, Julian R. ; Lambert, Simon C. ; Lardon, Laurent ; Healy, Jerome V. ; Steyer, Jean-Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-d60e1cc87e06e487b1ea2b7594cb04ec4bf682a63eb5c578f302a1c3318ce3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Industrial metrology. Testing</topic><topic>Life Sciences</topic><topic>Mechanical engineering. Machine design</topic><topic>Pollution</topic><topic>Prediction interval</topic><topic>Reactor modelling</topic><topic>Reactor states</topic><topic>Waste treatment</topic><topic>Wastewaters</topic><topic>Water pollution</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dixon, Maurice</creatorcontrib><creatorcontrib>Gallop, Julian R.</creatorcontrib><creatorcontrib>Lambert, Simon C.</creatorcontrib><creatorcontrib>Lardon, Laurent</creatorcontrib><creatorcontrib>Healy, Jerome V.</creatorcontrib><creatorcontrib>Steyer, Jean-Philippe</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Control engineering practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dixon, Maurice</au><au>Gallop, Julian R.</au><au>Lambert, Simon C.</au><au>Lardon, Laurent</au><au>Healy, Jerome V.</au><au>Steyer, Jean-Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data mining to support anaerobic WWTP monitoring</atitle><jtitle>Control engineering practice</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>15</volume><issue>8</issue><spage>987</spage><epage>999</epage><pages>987-999</pages><issn>0967-0661</issn><eissn>1873-6939</eissn><abstract>The stable and efficient operation of anaerobic wastewater treatment plants (WWTPs) is a major challenge for monitoring and control systems. Support for distributed anaerobic WWTPs through remotely monitoring their data was investigated in the TELEMAC framework. This paper describes how the accumulating filtered sensor data was mined to contribute to the refining of expert experience for insights into digester states. Visualisation techniques were used to present cluster analyses of digester states. A procedure for determining prediction intervals is described together with its application for volatile fatty acid concentrations; this procedure enables prediction risk assessment.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.conengprac.2006.11.010</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0467-8081</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0967-0661
ispartof Control engineering practice, 2007-08, Vol.15 (8), p.987-999
issn 0967-0661
1873-6939
language eng
recordid cdi_hal_primary_oai_HAL_hal_02659470v1
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Environmental Sciences
Exact sciences and technology
Industrial metrology. Testing
Life Sciences
Mechanical engineering. Machine design
Pollution
Prediction interval
Reactor modelling
Reactor states
Waste treatment
Wastewaters
Water pollution
Water treatment and pollution
title Data mining to support anaerobic WWTP monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20mining%20to%20support%20anaerobic%20WWTP%20monitoring&rft.jtitle=Control%20engineering%20practice&rft.au=Dixon,%20Maurice&rft.date=2007-08-01&rft.volume=15&rft.issue=8&rft.spage=987&rft.epage=999&rft.pages=987-999&rft.issn=0967-0661&rft.eissn=1873-6939&rft_id=info:doi/10.1016/j.conengprac.2006.11.010&rft_dat=%3Celsevier_hal_p%3ES0967066106002243%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0967066106002243&rfr_iscdi=true