Data mining to support anaerobic WWTP monitoring
The stable and efficient operation of anaerobic wastewater treatment plants (WWTPs) is a major challenge for monitoring and control systems. Support for distributed anaerobic WWTPs through remotely monitoring their data was investigated in the TELEMAC framework. This paper describes how the accumula...
Gespeichert in:
Veröffentlicht in: | Control engineering practice 2007-08, Vol.15 (8), p.987-999 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 999 |
---|---|
container_issue | 8 |
container_start_page | 987 |
container_title | Control engineering practice |
container_volume | 15 |
creator | Dixon, Maurice Gallop, Julian R. Lambert, Simon C. Lardon, Laurent Healy, Jerome V. Steyer, Jean-Philippe |
description | The stable and efficient operation of anaerobic wastewater treatment plants (WWTPs) is a major challenge for monitoring and control systems. Support for distributed anaerobic WWTPs through remotely monitoring their data was investigated in the TELEMAC framework. This paper describes how the accumulating filtered sensor data was mined to contribute to the refining of expert experience for insights into digester states. Visualisation techniques were used to present cluster analyses of digester states. A procedure for determining prediction intervals is described together with its application for volatile fatty acid concentrations; this procedure enables prediction risk assessment. |
doi_str_mv | 10.1016/j.conengprac.2006.11.010 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02659470v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0967066106002243</els_id><sourcerecordid>S0967066106002243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-d60e1cc87e06e487b1ea2b7594cb04ec4bf682a63eb5c578f302a1c3318ce3853</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwH7IwMCTcxYntjKV8FKkSDEUdLefqFFdtHNmhEv-eVEV0ZDrp9Dzv6V7GEoQMAcX9JiPf2nbdBUNZDiAyxAwQztgIleSpqHh1zkZQCZmCEHjJrmLcwKBWFY4YPJreJDvXunad9D6JX13nQ5-Y1tjga0fJcrl4T3a-db0PA3TNLhqzjfbmd47Zx_PTYjpL528vr9PJPKVC8j5dCbBIpKQFYQsla7Qmr2VZFVRDYamoG6FyI7itSyqlajjkBolzVGS5KvmY3R1zP81Wd8HtTPjW3jg9m8z1YQe5GNIk7HFg1ZGl4GMMtvkTEPShJb3Rp5b0oSWNqIeWBvX2qHYmktk2wbTk4slXssoFyIF7OHJ2-HnvbNCRnG3Jrlyw1OuVd_8f-wEEVIFF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data mining to support anaerobic WWTP monitoring</title><source>Access via ScienceDirect (Elsevier)</source><creator>Dixon, Maurice ; Gallop, Julian R. ; Lambert, Simon C. ; Lardon, Laurent ; Healy, Jerome V. ; Steyer, Jean-Philippe</creator><creatorcontrib>Dixon, Maurice ; Gallop, Julian R. ; Lambert, Simon C. ; Lardon, Laurent ; Healy, Jerome V. ; Steyer, Jean-Philippe</creatorcontrib><description>The stable and efficient operation of anaerobic wastewater treatment plants (WWTPs) is a major challenge for monitoring and control systems. Support for distributed anaerobic WWTPs through remotely monitoring their data was investigated in the TELEMAC framework. This paper describes how the accumulating filtered sensor data was mined to contribute to the refining of expert experience for insights into digester states. Visualisation techniques were used to present cluster analyses of digester states. A procedure for determining prediction intervals is described together with its application for volatile fatty acid concentrations; this procedure enables prediction risk assessment.</description><identifier>ISSN: 0967-0661</identifier><identifier>EISSN: 1873-6939</identifier><identifier>DOI: 10.1016/j.conengprac.2006.11.010</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Environmental Sciences ; Exact sciences and technology ; Industrial metrology. Testing ; Life Sciences ; Mechanical engineering. Machine design ; Pollution ; Prediction interval ; Reactor modelling ; Reactor states ; Waste treatment ; Wastewaters ; Water pollution ; Water treatment and pollution</subject><ispartof>Control engineering practice, 2007-08, Vol.15 (8), p.987-999</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-d60e1cc87e06e487b1ea2b7594cb04ec4bf682a63eb5c578f302a1c3318ce3853</citedby><cites>FETCH-LOGICAL-c473t-d60e1cc87e06e487b1ea2b7594cb04ec4bf682a63eb5c578f302a1c3318ce3853</cites><orcidid>0000-0003-0467-8081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.conengprac.2006.11.010$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18792607$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02659470$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dixon, Maurice</creatorcontrib><creatorcontrib>Gallop, Julian R.</creatorcontrib><creatorcontrib>Lambert, Simon C.</creatorcontrib><creatorcontrib>Lardon, Laurent</creatorcontrib><creatorcontrib>Healy, Jerome V.</creatorcontrib><creatorcontrib>Steyer, Jean-Philippe</creatorcontrib><title>Data mining to support anaerobic WWTP monitoring</title><title>Control engineering practice</title><description>The stable and efficient operation of anaerobic wastewater treatment plants (WWTPs) is a major challenge for monitoring and control systems. Support for distributed anaerobic WWTPs through remotely monitoring their data was investigated in the TELEMAC framework. This paper describes how the accumulating filtered sensor data was mined to contribute to the refining of expert experience for insights into digester states. Visualisation techniques were used to present cluster analyses of digester states. A procedure for determining prediction intervals is described together with its application for volatile fatty acid concentrations; this procedure enables prediction risk assessment.</description><subject>Applied sciences</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Industrial metrology. Testing</subject><subject>Life Sciences</subject><subject>Mechanical engineering. Machine design</subject><subject>Pollution</subject><subject>Prediction interval</subject><subject>Reactor modelling</subject><subject>Reactor states</subject><subject>Waste treatment</subject><subject>Wastewaters</subject><subject>Water pollution</subject><subject>Water treatment and pollution</subject><issn>0967-0661</issn><issn>1873-6939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwH7IwMCTcxYntjKV8FKkSDEUdLefqFFdtHNmhEv-eVEV0ZDrp9Dzv6V7GEoQMAcX9JiPf2nbdBUNZDiAyxAwQztgIleSpqHh1zkZQCZmCEHjJrmLcwKBWFY4YPJreJDvXunad9D6JX13nQ5-Y1tjga0fJcrl4T3a-db0PA3TNLhqzjfbmd47Zx_PTYjpL528vr9PJPKVC8j5dCbBIpKQFYQsla7Qmr2VZFVRDYamoG6FyI7itSyqlajjkBolzVGS5KvmY3R1zP81Wd8HtTPjW3jg9m8z1YQe5GNIk7HFg1ZGl4GMMtvkTEPShJb3Rp5b0oSWNqIeWBvX2qHYmktk2wbTk4slXssoFyIF7OHJ2-HnvbNCRnG3Jrlyw1OuVd_8f-wEEVIFF</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Dixon, Maurice</creator><creator>Gallop, Julian R.</creator><creator>Lambert, Simon C.</creator><creator>Lardon, Laurent</creator><creator>Healy, Jerome V.</creator><creator>Steyer, Jean-Philippe</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0467-8081</orcidid></search><sort><creationdate>20070801</creationdate><title>Data mining to support anaerobic WWTP monitoring</title><author>Dixon, Maurice ; Gallop, Julian R. ; Lambert, Simon C. ; Lardon, Laurent ; Healy, Jerome V. ; Steyer, Jean-Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-d60e1cc87e06e487b1ea2b7594cb04ec4bf682a63eb5c578f302a1c3318ce3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Industrial metrology. Testing</topic><topic>Life Sciences</topic><topic>Mechanical engineering. Machine design</topic><topic>Pollution</topic><topic>Prediction interval</topic><topic>Reactor modelling</topic><topic>Reactor states</topic><topic>Waste treatment</topic><topic>Wastewaters</topic><topic>Water pollution</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dixon, Maurice</creatorcontrib><creatorcontrib>Gallop, Julian R.</creatorcontrib><creatorcontrib>Lambert, Simon C.</creatorcontrib><creatorcontrib>Lardon, Laurent</creatorcontrib><creatorcontrib>Healy, Jerome V.</creatorcontrib><creatorcontrib>Steyer, Jean-Philippe</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Control engineering practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dixon, Maurice</au><au>Gallop, Julian R.</au><au>Lambert, Simon C.</au><au>Lardon, Laurent</au><au>Healy, Jerome V.</au><au>Steyer, Jean-Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data mining to support anaerobic WWTP monitoring</atitle><jtitle>Control engineering practice</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>15</volume><issue>8</issue><spage>987</spage><epage>999</epage><pages>987-999</pages><issn>0967-0661</issn><eissn>1873-6939</eissn><abstract>The stable and efficient operation of anaerobic wastewater treatment plants (WWTPs) is a major challenge for monitoring and control systems. Support for distributed anaerobic WWTPs through remotely monitoring their data was investigated in the TELEMAC framework. This paper describes how the accumulating filtered sensor data was mined to contribute to the refining of expert experience for insights into digester states. Visualisation techniques were used to present cluster analyses of digester states. A procedure for determining prediction intervals is described together with its application for volatile fatty acid concentrations; this procedure enables prediction risk assessment.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.conengprac.2006.11.010</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0467-8081</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0967-0661 |
ispartof | Control engineering practice, 2007-08, Vol.15 (8), p.987-999 |
issn | 0967-0661 1873-6939 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02659470v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Environmental Sciences Exact sciences and technology Industrial metrology. Testing Life Sciences Mechanical engineering. Machine design Pollution Prediction interval Reactor modelling Reactor states Waste treatment Wastewaters Water pollution Water treatment and pollution |
title | Data mining to support anaerobic WWTP monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20mining%20to%20support%20anaerobic%20WWTP%20monitoring&rft.jtitle=Control%20engineering%20practice&rft.au=Dixon,%20Maurice&rft.date=2007-08-01&rft.volume=15&rft.issue=8&rft.spage=987&rft.epage=999&rft.pages=987-999&rft.issn=0967-0661&rft.eissn=1873-6939&rft_id=info:doi/10.1016/j.conengprac.2006.11.010&rft_dat=%3Celsevier_hal_p%3ES0967066106002243%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0967066106002243&rfr_iscdi=true |