Sex Chromosomes in Land Plants
Sex chromosomes in land plants can evolve as a consequence of close linkage between the two sex determination genes with complementary dominance required to establish stable dioecious populations, and they are found in at least 48 species across 20 families. The sex chromosomes in hepatics, mosses,...
Gespeichert in:
Veröffentlicht in: | Annual review of plant biology 2011-01, Vol.62 (1), p.485-514 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 1 |
container_start_page | 485 |
container_title | Annual review of plant biology |
container_volume | 62 |
creator | Ming, Ray Bendahmane, Abdelhafid Renner, Susanne S |
description | Sex chromosomes in land plants can evolve as a consequence of close linkage between the two sex determination genes with complementary dominance required to establish stable dioecious populations, and they are found in at least 48 species across 20 families. The sex chromosomes in hepatics, mosses, and gymnosperms are morphologically heteromorphic. In angiosperms, heteromorphic sex chromosomes are found in at least 19 species from 4 families, while homomorphic sex chromosomes occur in 20 species from 13 families. The prevalence of the XY system found in 44 out of 48 species may reflect the predominance of the evolutionary pathway from gynodioecy towards dioecy. All dioecious species have the potential to evolve sex chromosomes, and reversions back from dioecy to various forms of monoecy, gynodioecy, or androdioecy have also occurred. Such reversals may occur especially during the early stages of sex chromosome evolution before the lethality of the YY (or WW) genotype is established. |
doi_str_mv | 10.1146/annurev-arplant-042110-103914 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02652329v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>864193099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-804061d399ce4f991880053039296ca9b19366778867a36cf8fb607989a1e17a3</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhoMofv8FHYKIF9VzkjRNLrwYQ51QUNBdh6xLtdI2M1mH_nszW73wKuHlOR95Qsg5whUiF9embTtv14nxy9q0qwQ4RYQEgSnkW2QfU54mFCnb_rmzJAWQe-QghHeAGFDcJXsUUypUBvvk5Nl-jiZv3jUuuMaGUdWOctMuRk-b7uGI7JSmDvZ4OA_J7O72ZTJN8sf7h8k4TwqepatEAgeBC6ZUYXmpFEoJkLK4E1WiMGqOigmRZVKKzDBRlLKcC8iUVAYtxuiQXPZ930ytl75qjP_SzlR6Os71JgMqUsqoWmNkL3p26d1HZ8NKN1UobB0Xtq4LWgoex4FSkTz7R767zrfxIRFSnGUoRYRueqjwLgRvy7_5CHqjXA_K9aBc98p1rzzWnwxDunljF3_Vv44jcNoDpXHavPoq6NkzjX8B0RHlHNg3VYmGBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869437186</pqid></control><display><type>article</type><title>Sex Chromosomes in Land Plants</title><source>Annual Reviews</source><source>MEDLINE</source><creator>Ming, Ray ; Bendahmane, Abdelhafid ; Renner, Susanne S</creator><creatorcontrib>Ming, Ray ; Bendahmane, Abdelhafid ; Renner, Susanne S</creatorcontrib><description>Sex chromosomes in land plants can evolve as a consequence of close linkage between the two sex determination genes with complementary dominance required to establish stable dioecious populations, and they are found in at least 48 species across 20 families. The sex chromosomes in hepatics, mosses, and gymnosperms are morphologically heteromorphic. In angiosperms, heteromorphic sex chromosomes are found in at least 19 species from 4 families, while homomorphic sex chromosomes occur in 20 species from 13 families. The prevalence of the XY system found in 44 out of 48 species may reflect the predominance of the evolutionary pathway from gynodioecy towards dioecy. All dioecious species have the potential to evolve sex chromosomes, and reversions back from dioecy to various forms of monoecy, gynodioecy, or androdioecy have also occurred. Such reversals may occur especially during the early stages of sex chromosome evolution before the lethality of the YY (or WW) genotype is established.</description><identifier>ISSN: 1543-5008</identifier><identifier>EISSN: 1545-2123</identifier><identifier>DOI: 10.1146/annurev-arplant-042110-103914</identifier><identifier>PMID: 21526970</identifier><language>eng</language><publisher>United States: Annual Reviews Inc</publisher><subject>androdioecy ; Chromosomes ; Chromosomes, Plant ; complementary genes ; Coniferophyta ; Crosses, Genetic ; dioecy ; embryophytes ; evolution ; Evolution, Molecular ; Flowers & plants ; Genes ; Genes, Plant ; genotype ; Genotype & phenotype ; gynodioecy ; Life Sciences ; Magnoliophyta ; monoecy ; mosses and liverworts ; Phylogeny ; Plant biology ; Plant populations ; Plants - genetics ; Reproduction - genetics ; sex chromosomes ; sex determination ; Species Specificity ; Vegetal Biology</subject><ispartof>Annual review of plant biology, 2011-01, Vol.62 (1), p.485-514</ispartof><rights>Copyright Annual Reviews, Inc. 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-804061d399ce4f991880053039296ca9b19366778867a36cf8fb607989a1e17a3</citedby><cites>FETCH-LOGICAL-c475t-804061d399ce4f991880053039296ca9b19366778867a36cf8fb607989a1e17a3</cites><orcidid>0000-0003-3246-868X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4172,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21526970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02652329$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ming, Ray</creatorcontrib><creatorcontrib>Bendahmane, Abdelhafid</creatorcontrib><creatorcontrib>Renner, Susanne S</creatorcontrib><title>Sex Chromosomes in Land Plants</title><title>Annual review of plant biology</title><addtitle>Annu Rev Plant Biol</addtitle><description>Sex chromosomes in land plants can evolve as a consequence of close linkage between the two sex determination genes with complementary dominance required to establish stable dioecious populations, and they are found in at least 48 species across 20 families. The sex chromosomes in hepatics, mosses, and gymnosperms are morphologically heteromorphic. In angiosperms, heteromorphic sex chromosomes are found in at least 19 species from 4 families, while homomorphic sex chromosomes occur in 20 species from 13 families. The prevalence of the XY system found in 44 out of 48 species may reflect the predominance of the evolutionary pathway from gynodioecy towards dioecy. All dioecious species have the potential to evolve sex chromosomes, and reversions back from dioecy to various forms of monoecy, gynodioecy, or androdioecy have also occurred. Such reversals may occur especially during the early stages of sex chromosome evolution before the lethality of the YY (or WW) genotype is established.</description><subject>androdioecy</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant</subject><subject>complementary genes</subject><subject>Coniferophyta</subject><subject>Crosses, Genetic</subject><subject>dioecy</subject><subject>embryophytes</subject><subject>evolution</subject><subject>Evolution, Molecular</subject><subject>Flowers & plants</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>genotype</subject><subject>Genotype & phenotype</subject><subject>gynodioecy</subject><subject>Life Sciences</subject><subject>Magnoliophyta</subject><subject>monoecy</subject><subject>mosses and liverworts</subject><subject>Phylogeny</subject><subject>Plant biology</subject><subject>Plant populations</subject><subject>Plants - genetics</subject><subject>Reproduction - genetics</subject><subject>sex chromosomes</subject><subject>sex determination</subject><subject>Species Specificity</subject><subject>Vegetal Biology</subject><issn>1543-5008</issn><issn>1545-2123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkV1LwzAUhoMofv8FHYKIF9VzkjRNLrwYQ51QUNBdh6xLtdI2M1mH_nszW73wKuHlOR95Qsg5whUiF9embTtv14nxy9q0qwQ4RYQEgSnkW2QfU54mFCnb_rmzJAWQe-QghHeAGFDcJXsUUypUBvvk5Nl-jiZv3jUuuMaGUdWOctMuRk-b7uGI7JSmDvZ4OA_J7O72ZTJN8sf7h8k4TwqepatEAgeBC6ZUYXmpFEoJkLK4E1WiMGqOigmRZVKKzDBRlLKcC8iUVAYtxuiQXPZ930ytl75qjP_SzlR6Os71JgMqUsqoWmNkL3p26d1HZ8NKN1UobB0Xtq4LWgoex4FSkTz7R767zrfxIRFSnGUoRYRueqjwLgRvy7_5CHqjXA_K9aBc98p1rzzWnwxDunljF3_Vv44jcNoDpXHavPoq6NkzjX8B0RHlHNg3VYmGBQ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Ming, Ray</creator><creator>Bendahmane, Abdelhafid</creator><creator>Renner, Susanne S</creator><general>Annual Reviews Inc</general><general>Annual Reviews, Inc</general><general>Annual Reviews</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T5</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3246-868X</orcidid></search><sort><creationdate>20110101</creationdate><title>Sex Chromosomes in Land Plants</title><author>Ming, Ray ; Bendahmane, Abdelhafid ; Renner, Susanne S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-804061d399ce4f991880053039296ca9b19366778867a36cf8fb607989a1e17a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>androdioecy</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant</topic><topic>complementary genes</topic><topic>Coniferophyta</topic><topic>Crosses, Genetic</topic><topic>dioecy</topic><topic>embryophytes</topic><topic>evolution</topic><topic>Evolution, Molecular</topic><topic>Flowers & plants</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>genotype</topic><topic>Genotype & phenotype</topic><topic>gynodioecy</topic><topic>Life Sciences</topic><topic>Magnoliophyta</topic><topic>monoecy</topic><topic>mosses and liverworts</topic><topic>Phylogeny</topic><topic>Plant biology</topic><topic>Plant populations</topic><topic>Plants - genetics</topic><topic>Reproduction - genetics</topic><topic>sex chromosomes</topic><topic>sex determination</topic><topic>Species Specificity</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ming, Ray</creatorcontrib><creatorcontrib>Bendahmane, Abdelhafid</creatorcontrib><creatorcontrib>Renner, Susanne S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Annual review of plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ming, Ray</au><au>Bendahmane, Abdelhafid</au><au>Renner, Susanne S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sex Chromosomes in Land Plants</atitle><jtitle>Annual review of plant biology</jtitle><addtitle>Annu Rev Plant Biol</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>62</volume><issue>1</issue><spage>485</spage><epage>514</epage><pages>485-514</pages><issn>1543-5008</issn><eissn>1545-2123</eissn><abstract>Sex chromosomes in land plants can evolve as a consequence of close linkage between the two sex determination genes with complementary dominance required to establish stable dioecious populations, and they are found in at least 48 species across 20 families. The sex chromosomes in hepatics, mosses, and gymnosperms are morphologically heteromorphic. In angiosperms, heteromorphic sex chromosomes are found in at least 19 species from 4 families, while homomorphic sex chromosomes occur in 20 species from 13 families. The prevalence of the XY system found in 44 out of 48 species may reflect the predominance of the evolutionary pathway from gynodioecy towards dioecy. All dioecious species have the potential to evolve sex chromosomes, and reversions back from dioecy to various forms of monoecy, gynodioecy, or androdioecy have also occurred. Such reversals may occur especially during the early stages of sex chromosome evolution before the lethality of the YY (or WW) genotype is established.</abstract><cop>United States</cop><pub>Annual Reviews Inc</pub><pmid>21526970</pmid><doi>10.1146/annurev-arplant-042110-103914</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-3246-868X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1543-5008 |
ispartof | Annual review of plant biology, 2011-01, Vol.62 (1), p.485-514 |
issn | 1543-5008 1545-2123 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02652329v1 |
source | Annual Reviews; MEDLINE |
subjects | androdioecy Chromosomes Chromosomes, Plant complementary genes Coniferophyta Crosses, Genetic dioecy embryophytes evolution Evolution, Molecular Flowers & plants Genes Genes, Plant genotype Genotype & phenotype gynodioecy Life Sciences Magnoliophyta monoecy mosses and liverworts Phylogeny Plant biology Plant populations Plants - genetics Reproduction - genetics sex chromosomes sex determination Species Specificity Vegetal Biology |
title | Sex Chromosomes in Land Plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sex%20Chromosomes%20in%20Land%20Plants&rft.jtitle=Annual%20review%20of%20plant%20biology&rft.au=Ming,%20Ray&rft.date=2011-01-01&rft.volume=62&rft.issue=1&rft.spage=485&rft.epage=514&rft.pages=485-514&rft.issn=1543-5008&rft.eissn=1545-2123&rft_id=info:doi/10.1146/annurev-arplant-042110-103914&rft_dat=%3Cproquest_hal_p%3E864193099%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869437186&rft_id=info:pmid/21526970&rfr_iscdi=true |