Sex Chromosomes in Land Plants

Sex chromosomes in land plants can evolve as a consequence of close linkage between the two sex determination genes with complementary dominance required to establish stable dioecious populations, and they are found in at least 48 species across 20 families. The sex chromosomes in hepatics, mosses,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of plant biology 2011-01, Vol.62 (1), p.485-514
Hauptverfasser: Ming, Ray, Bendahmane, Abdelhafid, Renner, Susanne S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue 1
container_start_page 485
container_title Annual review of plant biology
container_volume 62
creator Ming, Ray
Bendahmane, Abdelhafid
Renner, Susanne S
description Sex chromosomes in land plants can evolve as a consequence of close linkage between the two sex determination genes with complementary dominance required to establish stable dioecious populations, and they are found in at least 48 species across 20 families. The sex chromosomes in hepatics, mosses, and gymnosperms are morphologically heteromorphic. In angiosperms, heteromorphic sex chromosomes are found in at least 19 species from 4 families, while homomorphic sex chromosomes occur in 20 species from 13 families. The prevalence of the XY system found in 44 out of 48 species may reflect the predominance of the evolutionary pathway from gynodioecy towards dioecy. All dioecious species have the potential to evolve sex chromosomes, and reversions back from dioecy to various forms of monoecy, gynodioecy, or androdioecy have also occurred. Such reversals may occur especially during the early stages of sex chromosome evolution before the lethality of the YY (or WW) genotype is established.
doi_str_mv 10.1146/annurev-arplant-042110-103914
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02652329v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>864193099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-804061d399ce4f991880053039296ca9b19366778867a36cf8fb607989a1e17a3</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhoMofv8FHYKIF9VzkjRNLrwYQ51QUNBdh6xLtdI2M1mH_nszW73wKuHlOR95Qsg5whUiF9embTtv14nxy9q0qwQ4RYQEgSnkW2QfU54mFCnb_rmzJAWQe-QghHeAGFDcJXsUUypUBvvk5Nl-jiZv3jUuuMaGUdWOctMuRk-b7uGI7JSmDvZ4OA_J7O72ZTJN8sf7h8k4TwqepatEAgeBC6ZUYXmpFEoJkLK4E1WiMGqOigmRZVKKzDBRlLKcC8iUVAYtxuiQXPZ930ytl75qjP_SzlR6Os71JgMqUsqoWmNkL3p26d1HZ8NKN1UobB0Xtq4LWgoex4FSkTz7R767zrfxIRFSnGUoRYRueqjwLgRvy7_5CHqjXA_K9aBc98p1rzzWnwxDunljF3_Vv44jcNoDpXHavPoq6NkzjX8B0RHlHNg3VYmGBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869437186</pqid></control><display><type>article</type><title>Sex Chromosomes in Land Plants</title><source>Annual Reviews</source><source>MEDLINE</source><creator>Ming, Ray ; Bendahmane, Abdelhafid ; Renner, Susanne S</creator><creatorcontrib>Ming, Ray ; Bendahmane, Abdelhafid ; Renner, Susanne S</creatorcontrib><description>Sex chromosomes in land plants can evolve as a consequence of close linkage between the two sex determination genes with complementary dominance required to establish stable dioecious populations, and they are found in at least 48 species across 20 families. The sex chromosomes in hepatics, mosses, and gymnosperms are morphologically heteromorphic. In angiosperms, heteromorphic sex chromosomes are found in at least 19 species from 4 families, while homomorphic sex chromosomes occur in 20 species from 13 families. The prevalence of the XY system found in 44 out of 48 species may reflect the predominance of the evolutionary pathway from gynodioecy towards dioecy. All dioecious species have the potential to evolve sex chromosomes, and reversions back from dioecy to various forms of monoecy, gynodioecy, or androdioecy have also occurred. Such reversals may occur especially during the early stages of sex chromosome evolution before the lethality of the YY (or WW) genotype is established.</description><identifier>ISSN: 1543-5008</identifier><identifier>EISSN: 1545-2123</identifier><identifier>DOI: 10.1146/annurev-arplant-042110-103914</identifier><identifier>PMID: 21526970</identifier><language>eng</language><publisher>United States: Annual Reviews Inc</publisher><subject>androdioecy ; Chromosomes ; Chromosomes, Plant ; complementary genes ; Coniferophyta ; Crosses, Genetic ; dioecy ; embryophytes ; evolution ; Evolution, Molecular ; Flowers &amp; plants ; Genes ; Genes, Plant ; genotype ; Genotype &amp; phenotype ; gynodioecy ; Life Sciences ; Magnoliophyta ; monoecy ; mosses and liverworts ; Phylogeny ; Plant biology ; Plant populations ; Plants - genetics ; Reproduction - genetics ; sex chromosomes ; sex determination ; Species Specificity ; Vegetal Biology</subject><ispartof>Annual review of plant biology, 2011-01, Vol.62 (1), p.485-514</ispartof><rights>Copyright Annual Reviews, Inc. 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-804061d399ce4f991880053039296ca9b19366778867a36cf8fb607989a1e17a3</citedby><cites>FETCH-LOGICAL-c475t-804061d399ce4f991880053039296ca9b19366778867a36cf8fb607989a1e17a3</cites><orcidid>0000-0003-3246-868X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4172,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21526970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02652329$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ming, Ray</creatorcontrib><creatorcontrib>Bendahmane, Abdelhafid</creatorcontrib><creatorcontrib>Renner, Susanne S</creatorcontrib><title>Sex Chromosomes in Land Plants</title><title>Annual review of plant biology</title><addtitle>Annu Rev Plant Biol</addtitle><description>Sex chromosomes in land plants can evolve as a consequence of close linkage between the two sex determination genes with complementary dominance required to establish stable dioecious populations, and they are found in at least 48 species across 20 families. The sex chromosomes in hepatics, mosses, and gymnosperms are morphologically heteromorphic. In angiosperms, heteromorphic sex chromosomes are found in at least 19 species from 4 families, while homomorphic sex chromosomes occur in 20 species from 13 families. The prevalence of the XY system found in 44 out of 48 species may reflect the predominance of the evolutionary pathway from gynodioecy towards dioecy. All dioecious species have the potential to evolve sex chromosomes, and reversions back from dioecy to various forms of monoecy, gynodioecy, or androdioecy have also occurred. Such reversals may occur especially during the early stages of sex chromosome evolution before the lethality of the YY (or WW) genotype is established.</description><subject>androdioecy</subject><subject>Chromosomes</subject><subject>Chromosomes, Plant</subject><subject>complementary genes</subject><subject>Coniferophyta</subject><subject>Crosses, Genetic</subject><subject>dioecy</subject><subject>embryophytes</subject><subject>evolution</subject><subject>Evolution, Molecular</subject><subject>Flowers &amp; plants</subject><subject>Genes</subject><subject>Genes, Plant</subject><subject>genotype</subject><subject>Genotype &amp; phenotype</subject><subject>gynodioecy</subject><subject>Life Sciences</subject><subject>Magnoliophyta</subject><subject>monoecy</subject><subject>mosses and liverworts</subject><subject>Phylogeny</subject><subject>Plant biology</subject><subject>Plant populations</subject><subject>Plants - genetics</subject><subject>Reproduction - genetics</subject><subject>sex chromosomes</subject><subject>sex determination</subject><subject>Species Specificity</subject><subject>Vegetal Biology</subject><issn>1543-5008</issn><issn>1545-2123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkV1LwzAUhoMofv8FHYKIF9VzkjRNLrwYQ51QUNBdh6xLtdI2M1mH_nszW73wKuHlOR95Qsg5whUiF9embTtv14nxy9q0qwQ4RYQEgSnkW2QfU54mFCnb_rmzJAWQe-QghHeAGFDcJXsUUypUBvvk5Nl-jiZv3jUuuMaGUdWOctMuRk-b7uGI7JSmDvZ4OA_J7O72ZTJN8sf7h8k4TwqepatEAgeBC6ZUYXmpFEoJkLK4E1WiMGqOigmRZVKKzDBRlLKcC8iUVAYtxuiQXPZ930ytl75qjP_SzlR6Os71JgMqUsqoWmNkL3p26d1HZ8NKN1UobB0Xtq4LWgoex4FSkTz7R767zrfxIRFSnGUoRYRueqjwLgRvy7_5CHqjXA_K9aBc98p1rzzWnwxDunljF3_Vv44jcNoDpXHavPoq6NkzjX8B0RHlHNg3VYmGBQ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Ming, Ray</creator><creator>Bendahmane, Abdelhafid</creator><creator>Renner, Susanne S</creator><general>Annual Reviews Inc</general><general>Annual Reviews, Inc</general><general>Annual Reviews</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T5</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3246-868X</orcidid></search><sort><creationdate>20110101</creationdate><title>Sex Chromosomes in Land Plants</title><author>Ming, Ray ; Bendahmane, Abdelhafid ; Renner, Susanne S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-804061d399ce4f991880053039296ca9b19366778867a36cf8fb607989a1e17a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>androdioecy</topic><topic>Chromosomes</topic><topic>Chromosomes, Plant</topic><topic>complementary genes</topic><topic>Coniferophyta</topic><topic>Crosses, Genetic</topic><topic>dioecy</topic><topic>embryophytes</topic><topic>evolution</topic><topic>Evolution, Molecular</topic><topic>Flowers &amp; plants</topic><topic>Genes</topic><topic>Genes, Plant</topic><topic>genotype</topic><topic>Genotype &amp; phenotype</topic><topic>gynodioecy</topic><topic>Life Sciences</topic><topic>Magnoliophyta</topic><topic>monoecy</topic><topic>mosses and liverworts</topic><topic>Phylogeny</topic><topic>Plant biology</topic><topic>Plant populations</topic><topic>Plants - genetics</topic><topic>Reproduction - genetics</topic><topic>sex chromosomes</topic><topic>sex determination</topic><topic>Species Specificity</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ming, Ray</creatorcontrib><creatorcontrib>Bendahmane, Abdelhafid</creatorcontrib><creatorcontrib>Renner, Susanne S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Annual review of plant biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ming, Ray</au><au>Bendahmane, Abdelhafid</au><au>Renner, Susanne S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sex Chromosomes in Land Plants</atitle><jtitle>Annual review of plant biology</jtitle><addtitle>Annu Rev Plant Biol</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>62</volume><issue>1</issue><spage>485</spage><epage>514</epage><pages>485-514</pages><issn>1543-5008</issn><eissn>1545-2123</eissn><abstract>Sex chromosomes in land plants can evolve as a consequence of close linkage between the two sex determination genes with complementary dominance required to establish stable dioecious populations, and they are found in at least 48 species across 20 families. The sex chromosomes in hepatics, mosses, and gymnosperms are morphologically heteromorphic. In angiosperms, heteromorphic sex chromosomes are found in at least 19 species from 4 families, while homomorphic sex chromosomes occur in 20 species from 13 families. The prevalence of the XY system found in 44 out of 48 species may reflect the predominance of the evolutionary pathway from gynodioecy towards dioecy. All dioecious species have the potential to evolve sex chromosomes, and reversions back from dioecy to various forms of monoecy, gynodioecy, or androdioecy have also occurred. Such reversals may occur especially during the early stages of sex chromosome evolution before the lethality of the YY (or WW) genotype is established.</abstract><cop>United States</cop><pub>Annual Reviews Inc</pub><pmid>21526970</pmid><doi>10.1146/annurev-arplant-042110-103914</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-3246-868X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1543-5008
ispartof Annual review of plant biology, 2011-01, Vol.62 (1), p.485-514
issn 1543-5008
1545-2123
language eng
recordid cdi_hal_primary_oai_HAL_hal_02652329v1
source Annual Reviews; MEDLINE
subjects androdioecy
Chromosomes
Chromosomes, Plant
complementary genes
Coniferophyta
Crosses, Genetic
dioecy
embryophytes
evolution
Evolution, Molecular
Flowers & plants
Genes
Genes, Plant
genotype
Genotype & phenotype
gynodioecy
Life Sciences
Magnoliophyta
monoecy
mosses and liverworts
Phylogeny
Plant biology
Plant populations
Plants - genetics
Reproduction - genetics
sex chromosomes
sex determination
Species Specificity
Vegetal Biology
title Sex Chromosomes in Land Plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A11%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sex%20Chromosomes%20in%20Land%20Plants&rft.jtitle=Annual%20review%20of%20plant%20biology&rft.au=Ming,%20Ray&rft.date=2011-01-01&rft.volume=62&rft.issue=1&rft.spage=485&rft.epage=514&rft.pages=485-514&rft.issn=1543-5008&rft.eissn=1545-2123&rft_id=info:doi/10.1146/annurev-arplant-042110-103914&rft_dat=%3Cproquest_hal_p%3E864193099%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869437186&rft_id=info:pmid/21526970&rfr_iscdi=true