RHIZOME ARCHITECTURE: An Adaptive Neurobehavioral Control Architecture for Cognitive Mobile Robots—Application in a Vision-Based Indoor Robot Navigation Context

In this paper, a control architecture called Robotic Hybrid Indoor-Zone Operational ModulE (RHIZOME) is proposed as a new control paradigm capable of easy adaptation to different scenarios where a robot is able to interact with its environment and other cognitive agents while coping with possible un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of social robotics 2020-07, Vol.12 (3), p.659-688
Hauptverfasser: Rojas-Castro, Dalia Marcela, Revel, Arnaud, Menard, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 688
container_issue 3
container_start_page 659
container_title International journal of social robotics
container_volume 12
creator Rojas-Castro, Dalia Marcela
Revel, Arnaud
Menard, Michel
description In this paper, a control architecture called Robotic Hybrid Indoor-Zone Operational ModulE (RHIZOME) is proposed as a new control paradigm capable of easy adaptation to different scenarios where a robot is able to interact with its environment and other cognitive agents while coping with possible unexpected situations. It creates a synergy of different state-of-the-art control paradigms by merging them into a neural structure, which follows a perception-action mechanism that constantly evolves because of the dynamic interaction of the robot with its environment. The RHIZOME architecture was tested on the NAO robot humanoid in an indoor vision-based navigation context. The proposed architecture was conceived, built and implemented through three different scenarios under which, three interdependent architectures emerged, each responding to different scenario constraints (deterministic and stochastic). Thanks to the generic composition, it is possible to develop it further with respect to robustness and completeness by simply adding new modules without modifying the already in-built components. Hence, it can be extended to perform other cognitive tasks. Experimental results obtained from its physical implementation show the feasibility, genericity and adaptability of the architecture.
doi_str_mv 10.1007/s12369-019-00602-2
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02651430v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419779922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-caa28ac2f24eae60f94968b357f72acfaf07bf0400797494598ef3f22c99f7c93</originalsourceid><addsrcrecordid>eNp9kc1O4zAUhSM0SCDgBVhZYjWLDP5J4nh2mahDKxWQqsKCjeW4dmsU4oztVsOOh-AJeDSeBLfhZ4cly1f2d8698kmSUwR_IQjpuUeYFCyFKG5YQJziveQQlTRPsxLmPz5qytBBcuL9PYyLYEppcZi8zMaTu-vLEahm9XgyH9Xzm9noN6g6UC1EH8xGgSu1drZRK7Ex1okW1LYLzragcnJlgpJh7RTQ1sWHZWd2kkvbmFaBmW1s8K9Pz1Xft0aKYGwHTAcEuDU-1ukf4dUCTLqFjfIdDa5im-VAbhup_-E42dei9erk_TxKbv6O5vU4nV5fTOpqmkqSk5BKIXApJNY4U0IVULOMFWVDcqopFlILDWmjYRZ_jNGMZTkrlSYaY8mYppKRo-Tn4LsSLe-deRDukVth-Lia8u0dxEWOMgI3KLJnA9s7-2-tfOD3du26OB7HGWKUMoZxpPBASWe9d0p_2iLIt9HxIToeo-O76PhWRAaRj3C3VO7L-hvVG9y0nNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419779922</pqid></control><display><type>article</type><title>RHIZOME ARCHITECTURE: An Adaptive Neurobehavioral Control Architecture for Cognitive Mobile Robots—Application in a Vision-Based Indoor Robot Navigation Context</title><source>Springer Online Journals</source><creator>Rojas-Castro, Dalia Marcela ; Revel, Arnaud ; Menard, Michel</creator><creatorcontrib>Rojas-Castro, Dalia Marcela ; Revel, Arnaud ; Menard, Michel</creatorcontrib><description>In this paper, a control architecture called Robotic Hybrid Indoor-Zone Operational ModulE (RHIZOME) is proposed as a new control paradigm capable of easy adaptation to different scenarios where a robot is able to interact with its environment and other cognitive agents while coping with possible unexpected situations. It creates a synergy of different state-of-the-art control paradigms by merging them into a neural structure, which follows a perception-action mechanism that constantly evolves because of the dynamic interaction of the robot with its environment. The RHIZOME architecture was tested on the NAO robot humanoid in an indoor vision-based navigation context. The proposed architecture was conceived, built and implemented through three different scenarios under which, three interdependent architectures emerged, each responding to different scenario constraints (deterministic and stochastic). Thanks to the generic composition, it is possible to develop it further with respect to robustness and completeness by simply adding new modules without modifying the already in-built components. Hence, it can be extended to perform other cognitive tasks. Experimental results obtained from its physical implementation show the feasibility, genericity and adaptability of the architecture.</description><identifier>ISSN: 1875-4791</identifier><identifier>EISSN: 1875-4805</identifier><identifier>DOI: 10.1007/s12369-019-00602-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptive control ; Architecture ; Artificial Intelligence ; Cognitive tasks ; Computer Science ; Context ; Control ; Engineering ; Humanoid ; Mechatronics ; Modules ; Navigation ; Robot control ; Robotics ; Robots ; Vision</subject><ispartof>International journal of social robotics, 2020-07, Vol.12 (3), p.659-688</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-caa28ac2f24eae60f94968b357f72acfaf07bf0400797494598ef3f22c99f7c93</citedby><cites>FETCH-LOGICAL-c353t-caa28ac2f24eae60f94968b357f72acfaf07bf0400797494598ef3f22c99f7c93</cites><orcidid>0000-0002-8577-080X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12369-019-00602-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12369-019-00602-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://univ-rochelle.hal.science/hal-02651430$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rojas-Castro, Dalia Marcela</creatorcontrib><creatorcontrib>Revel, Arnaud</creatorcontrib><creatorcontrib>Menard, Michel</creatorcontrib><title>RHIZOME ARCHITECTURE: An Adaptive Neurobehavioral Control Architecture for Cognitive Mobile Robots—Application in a Vision-Based Indoor Robot Navigation Context</title><title>International journal of social robotics</title><addtitle>Int J of Soc Robotics</addtitle><description>In this paper, a control architecture called Robotic Hybrid Indoor-Zone Operational ModulE (RHIZOME) is proposed as a new control paradigm capable of easy adaptation to different scenarios where a robot is able to interact with its environment and other cognitive agents while coping with possible unexpected situations. It creates a synergy of different state-of-the-art control paradigms by merging them into a neural structure, which follows a perception-action mechanism that constantly evolves because of the dynamic interaction of the robot with its environment. The RHIZOME architecture was tested on the NAO robot humanoid in an indoor vision-based navigation context. The proposed architecture was conceived, built and implemented through three different scenarios under which, three interdependent architectures emerged, each responding to different scenario constraints (deterministic and stochastic). Thanks to the generic composition, it is possible to develop it further with respect to robustness and completeness by simply adding new modules without modifying the already in-built components. Hence, it can be extended to perform other cognitive tasks. Experimental results obtained from its physical implementation show the feasibility, genericity and adaptability of the architecture.</description><subject>Adaptive control</subject><subject>Architecture</subject><subject>Artificial Intelligence</subject><subject>Cognitive tasks</subject><subject>Computer Science</subject><subject>Context</subject><subject>Control</subject><subject>Engineering</subject><subject>Humanoid</subject><subject>Mechatronics</subject><subject>Modules</subject><subject>Navigation</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Vision</subject><issn>1875-4791</issn><issn>1875-4805</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1O4zAUhSM0SCDgBVhZYjWLDP5J4nh2mahDKxWQqsKCjeW4dmsU4oztVsOOh-AJeDSeBLfhZ4cly1f2d8698kmSUwR_IQjpuUeYFCyFKG5YQJziveQQlTRPsxLmPz5qytBBcuL9PYyLYEppcZi8zMaTu-vLEahm9XgyH9Xzm9noN6g6UC1EH8xGgSu1drZRK7Ex1okW1LYLzragcnJlgpJh7RTQ1sWHZWd2kkvbmFaBmW1s8K9Pz1Xft0aKYGwHTAcEuDU-1ukf4dUCTLqFjfIdDa5im-VAbhup_-E42dei9erk_TxKbv6O5vU4nV5fTOpqmkqSk5BKIXApJNY4U0IVULOMFWVDcqopFlILDWmjYRZ_jNGMZTkrlSYaY8mYppKRo-Tn4LsSLe-deRDukVth-Lia8u0dxEWOMgI3KLJnA9s7-2-tfOD3du26OB7HGWKUMoZxpPBASWe9d0p_2iLIt9HxIToeo-O76PhWRAaRj3C3VO7L-hvVG9y0nNw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Rojas-Castro, Dalia Marcela</creator><creator>Revel, Arnaud</creator><creator>Menard, Michel</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8577-080X</orcidid></search><sort><creationdate>20200701</creationdate><title>RHIZOME ARCHITECTURE: An Adaptive Neurobehavioral Control Architecture for Cognitive Mobile Robots—Application in a Vision-Based Indoor Robot Navigation Context</title><author>Rojas-Castro, Dalia Marcela ; Revel, Arnaud ; Menard, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-caa28ac2f24eae60f94968b357f72acfaf07bf0400797494598ef3f22c99f7c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Architecture</topic><topic>Artificial Intelligence</topic><topic>Cognitive tasks</topic><topic>Computer Science</topic><topic>Context</topic><topic>Control</topic><topic>Engineering</topic><topic>Humanoid</topic><topic>Mechatronics</topic><topic>Modules</topic><topic>Navigation</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojas-Castro, Dalia Marcela</creatorcontrib><creatorcontrib>Revel, Arnaud</creatorcontrib><creatorcontrib>Menard, Michel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of social robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojas-Castro, Dalia Marcela</au><au>Revel, Arnaud</au><au>Menard, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RHIZOME ARCHITECTURE: An Adaptive Neurobehavioral Control Architecture for Cognitive Mobile Robots—Application in a Vision-Based Indoor Robot Navigation Context</atitle><jtitle>International journal of social robotics</jtitle><stitle>Int J of Soc Robotics</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>12</volume><issue>3</issue><spage>659</spage><epage>688</epage><pages>659-688</pages><issn>1875-4791</issn><eissn>1875-4805</eissn><abstract>In this paper, a control architecture called Robotic Hybrid Indoor-Zone Operational ModulE (RHIZOME) is proposed as a new control paradigm capable of easy adaptation to different scenarios where a robot is able to interact with its environment and other cognitive agents while coping with possible unexpected situations. It creates a synergy of different state-of-the-art control paradigms by merging them into a neural structure, which follows a perception-action mechanism that constantly evolves because of the dynamic interaction of the robot with its environment. The RHIZOME architecture was tested on the NAO robot humanoid in an indoor vision-based navigation context. The proposed architecture was conceived, built and implemented through three different scenarios under which, three interdependent architectures emerged, each responding to different scenario constraints (deterministic and stochastic). Thanks to the generic composition, it is possible to develop it further with respect to robustness and completeness by simply adding new modules without modifying the already in-built components. Hence, it can be extended to perform other cognitive tasks. Experimental results obtained from its physical implementation show the feasibility, genericity and adaptability of the architecture.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12369-019-00602-2</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-8577-080X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1875-4791
ispartof International journal of social robotics, 2020-07, Vol.12 (3), p.659-688
issn 1875-4791
1875-4805
language eng
recordid cdi_hal_primary_oai_HAL_hal_02651430v1
source Springer Online Journals
subjects Adaptive control
Architecture
Artificial Intelligence
Cognitive tasks
Computer Science
Context
Control
Engineering
Humanoid
Mechatronics
Modules
Navigation
Robot control
Robotics
Robots
Vision
title RHIZOME ARCHITECTURE: An Adaptive Neurobehavioral Control Architecture for Cognitive Mobile Robots—Application in a Vision-Based Indoor Robot Navigation Context
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RHIZOME%20ARCHITECTURE:%20An%20Adaptive%20Neurobehavioral%20Control%20Architecture%20for%20Cognitive%20Mobile%20Robots%E2%80%94Application%20in%20a%20Vision-Based%20Indoor%20Robot%20Navigation%20Context&rft.jtitle=International%20journal%20of%20social%20robotics&rft.au=Rojas-Castro,%20Dalia%20Marcela&rft.date=2020-07-01&rft.volume=12&rft.issue=3&rft.spage=659&rft.epage=688&rft.pages=659-688&rft.issn=1875-4791&rft.eissn=1875-4805&rft_id=info:doi/10.1007/s12369-019-00602-2&rft_dat=%3Cproquest_hal_p%3E2419779922%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419779922&rft_id=info:pmid/&rfr_iscdi=true