RHIZOME ARCHITECTURE: An Adaptive Neurobehavioral Control Architecture for Cognitive Mobile Robots—Application in a Vision-Based Indoor Robot Navigation Context
In this paper, a control architecture called Robotic Hybrid Indoor-Zone Operational ModulE (RHIZOME) is proposed as a new control paradigm capable of easy adaptation to different scenarios where a robot is able to interact with its environment and other cognitive agents while coping with possible un...
Gespeichert in:
Veröffentlicht in: | International journal of social robotics 2020-07, Vol.12 (3), p.659-688 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 688 |
---|---|
container_issue | 3 |
container_start_page | 659 |
container_title | International journal of social robotics |
container_volume | 12 |
creator | Rojas-Castro, Dalia Marcela Revel, Arnaud Menard, Michel |
description | In this paper, a control architecture called Robotic Hybrid Indoor-Zone Operational ModulE (RHIZOME) is proposed as a new control paradigm capable of easy adaptation to different scenarios where a robot is able to interact with its environment and other cognitive agents while coping with possible unexpected situations. It creates a synergy of different state-of-the-art control paradigms by merging them into a neural structure, which follows a perception-action mechanism that constantly evolves because of the dynamic interaction of the robot with its environment. The RHIZOME architecture was tested on the NAO robot humanoid in an indoor vision-based navigation context. The proposed architecture was conceived, built and implemented through three different scenarios under which, three interdependent architectures emerged, each responding to different scenario constraints (deterministic and stochastic). Thanks to the generic composition, it is possible to develop it further with respect to robustness and completeness by simply adding new modules without modifying the already in-built components. Hence, it can be extended to perform other cognitive tasks. Experimental results obtained from its physical implementation show the feasibility, genericity and adaptability of the architecture. |
doi_str_mv | 10.1007/s12369-019-00602-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02651430v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2419779922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-caa28ac2f24eae60f94968b357f72acfaf07bf0400797494598ef3f22c99f7c93</originalsourceid><addsrcrecordid>eNp9kc1O4zAUhSM0SCDgBVhZYjWLDP5J4nh2mahDKxWQqsKCjeW4dmsU4oztVsOOh-AJeDSeBLfhZ4cly1f2d8698kmSUwR_IQjpuUeYFCyFKG5YQJziveQQlTRPsxLmPz5qytBBcuL9PYyLYEppcZi8zMaTu-vLEahm9XgyH9Xzm9noN6g6UC1EH8xGgSu1drZRK7Ex1okW1LYLzragcnJlgpJh7RTQ1sWHZWd2kkvbmFaBmW1s8K9Pz1Xft0aKYGwHTAcEuDU-1ukf4dUCTLqFjfIdDa5im-VAbhup_-E42dei9erk_TxKbv6O5vU4nV5fTOpqmkqSk5BKIXApJNY4U0IVULOMFWVDcqopFlILDWmjYRZ_jNGMZTkrlSYaY8mYppKRo-Tn4LsSLe-deRDukVth-Lia8u0dxEWOMgI3KLJnA9s7-2-tfOD3du26OB7HGWKUMoZxpPBASWe9d0p_2iLIt9HxIToeo-O76PhWRAaRj3C3VO7L-hvVG9y0nNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419779922</pqid></control><display><type>article</type><title>RHIZOME ARCHITECTURE: An Adaptive Neurobehavioral Control Architecture for Cognitive Mobile Robots—Application in a Vision-Based Indoor Robot Navigation Context</title><source>Springer Online Journals</source><creator>Rojas-Castro, Dalia Marcela ; Revel, Arnaud ; Menard, Michel</creator><creatorcontrib>Rojas-Castro, Dalia Marcela ; Revel, Arnaud ; Menard, Michel</creatorcontrib><description>In this paper, a control architecture called Robotic Hybrid Indoor-Zone Operational ModulE (RHIZOME) is proposed as a new control paradigm capable of easy adaptation to different scenarios where a robot is able to interact with its environment and other cognitive agents while coping with possible unexpected situations. It creates a synergy of different state-of-the-art control paradigms by merging them into a neural structure, which follows a perception-action mechanism that constantly evolves because of the dynamic interaction of the robot with its environment. The RHIZOME architecture was tested on the NAO robot humanoid in an indoor vision-based navigation context. The proposed architecture was conceived, built and implemented through three different scenarios under which, three interdependent architectures emerged, each responding to different scenario constraints (deterministic and stochastic). Thanks to the generic composition, it is possible to develop it further with respect to robustness and completeness by simply adding new modules without modifying the already in-built components. Hence, it can be extended to perform other cognitive tasks. Experimental results obtained from its physical implementation show the feasibility, genericity and adaptability of the architecture.</description><identifier>ISSN: 1875-4791</identifier><identifier>EISSN: 1875-4805</identifier><identifier>DOI: 10.1007/s12369-019-00602-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Adaptive control ; Architecture ; Artificial Intelligence ; Cognitive tasks ; Computer Science ; Context ; Control ; Engineering ; Humanoid ; Mechatronics ; Modules ; Navigation ; Robot control ; Robotics ; Robots ; Vision</subject><ispartof>International journal of social robotics, 2020-07, Vol.12 (3), p.659-688</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-caa28ac2f24eae60f94968b357f72acfaf07bf0400797494598ef3f22c99f7c93</citedby><cites>FETCH-LOGICAL-c353t-caa28ac2f24eae60f94968b357f72acfaf07bf0400797494598ef3f22c99f7c93</cites><orcidid>0000-0002-8577-080X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12369-019-00602-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12369-019-00602-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://univ-rochelle.hal.science/hal-02651430$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rojas-Castro, Dalia Marcela</creatorcontrib><creatorcontrib>Revel, Arnaud</creatorcontrib><creatorcontrib>Menard, Michel</creatorcontrib><title>RHIZOME ARCHITECTURE: An Adaptive Neurobehavioral Control Architecture for Cognitive Mobile Robots—Application in a Vision-Based Indoor Robot Navigation Context</title><title>International journal of social robotics</title><addtitle>Int J of Soc Robotics</addtitle><description>In this paper, a control architecture called Robotic Hybrid Indoor-Zone Operational ModulE (RHIZOME) is proposed as a new control paradigm capable of easy adaptation to different scenarios where a robot is able to interact with its environment and other cognitive agents while coping with possible unexpected situations. It creates a synergy of different state-of-the-art control paradigms by merging them into a neural structure, which follows a perception-action mechanism that constantly evolves because of the dynamic interaction of the robot with its environment. The RHIZOME architecture was tested on the NAO robot humanoid in an indoor vision-based navigation context. The proposed architecture was conceived, built and implemented through three different scenarios under which, three interdependent architectures emerged, each responding to different scenario constraints (deterministic and stochastic). Thanks to the generic composition, it is possible to develop it further with respect to robustness and completeness by simply adding new modules without modifying the already in-built components. Hence, it can be extended to perform other cognitive tasks. Experimental results obtained from its physical implementation show the feasibility, genericity and adaptability of the architecture.</description><subject>Adaptive control</subject><subject>Architecture</subject><subject>Artificial Intelligence</subject><subject>Cognitive tasks</subject><subject>Computer Science</subject><subject>Context</subject><subject>Control</subject><subject>Engineering</subject><subject>Humanoid</subject><subject>Mechatronics</subject><subject>Modules</subject><subject>Navigation</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Robots</subject><subject>Vision</subject><issn>1875-4791</issn><issn>1875-4805</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc1O4zAUhSM0SCDgBVhZYjWLDP5J4nh2mahDKxWQqsKCjeW4dmsU4oztVsOOh-AJeDSeBLfhZ4cly1f2d8698kmSUwR_IQjpuUeYFCyFKG5YQJziveQQlTRPsxLmPz5qytBBcuL9PYyLYEppcZi8zMaTu-vLEahm9XgyH9Xzm9noN6g6UC1EH8xGgSu1drZRK7Ex1okW1LYLzragcnJlgpJh7RTQ1sWHZWd2kkvbmFaBmW1s8K9Pz1Xft0aKYGwHTAcEuDU-1ukf4dUCTLqFjfIdDa5im-VAbhup_-E42dei9erk_TxKbv6O5vU4nV5fTOpqmkqSk5BKIXApJNY4U0IVULOMFWVDcqopFlILDWmjYRZ_jNGMZTkrlSYaY8mYppKRo-Tn4LsSLe-deRDukVth-Lia8u0dxEWOMgI3KLJnA9s7-2-tfOD3du26OB7HGWKUMoZxpPBASWe9d0p_2iLIt9HxIToeo-O76PhWRAaRj3C3VO7L-hvVG9y0nNw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Rojas-Castro, Dalia Marcela</creator><creator>Revel, Arnaud</creator><creator>Menard, Michel</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8577-080X</orcidid></search><sort><creationdate>20200701</creationdate><title>RHIZOME ARCHITECTURE: An Adaptive Neurobehavioral Control Architecture for Cognitive Mobile Robots—Application in a Vision-Based Indoor Robot Navigation Context</title><author>Rojas-Castro, Dalia Marcela ; Revel, Arnaud ; Menard, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-caa28ac2f24eae60f94968b357f72acfaf07bf0400797494598ef3f22c99f7c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptive control</topic><topic>Architecture</topic><topic>Artificial Intelligence</topic><topic>Cognitive tasks</topic><topic>Computer Science</topic><topic>Context</topic><topic>Control</topic><topic>Engineering</topic><topic>Humanoid</topic><topic>Mechatronics</topic><topic>Modules</topic><topic>Navigation</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Robots</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rojas-Castro, Dalia Marcela</creatorcontrib><creatorcontrib>Revel, Arnaud</creatorcontrib><creatorcontrib>Menard, Michel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of social robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rojas-Castro, Dalia Marcela</au><au>Revel, Arnaud</au><au>Menard, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RHIZOME ARCHITECTURE: An Adaptive Neurobehavioral Control Architecture for Cognitive Mobile Robots—Application in a Vision-Based Indoor Robot Navigation Context</atitle><jtitle>International journal of social robotics</jtitle><stitle>Int J of Soc Robotics</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>12</volume><issue>3</issue><spage>659</spage><epage>688</epage><pages>659-688</pages><issn>1875-4791</issn><eissn>1875-4805</eissn><abstract>In this paper, a control architecture called Robotic Hybrid Indoor-Zone Operational ModulE (RHIZOME) is proposed as a new control paradigm capable of easy adaptation to different scenarios where a robot is able to interact with its environment and other cognitive agents while coping with possible unexpected situations. It creates a synergy of different state-of-the-art control paradigms by merging them into a neural structure, which follows a perception-action mechanism that constantly evolves because of the dynamic interaction of the robot with its environment. The RHIZOME architecture was tested on the NAO robot humanoid in an indoor vision-based navigation context. The proposed architecture was conceived, built and implemented through three different scenarios under which, three interdependent architectures emerged, each responding to different scenario constraints (deterministic and stochastic). Thanks to the generic composition, it is possible to develop it further with respect to robustness and completeness by simply adding new modules without modifying the already in-built components. Hence, it can be extended to perform other cognitive tasks. Experimental results obtained from its physical implementation show the feasibility, genericity and adaptability of the architecture.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12369-019-00602-2</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-8577-080X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1875-4791 |
ispartof | International journal of social robotics, 2020-07, Vol.12 (3), p.659-688 |
issn | 1875-4791 1875-4805 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02651430v1 |
source | Springer Online Journals |
subjects | Adaptive control Architecture Artificial Intelligence Cognitive tasks Computer Science Context Control Engineering Humanoid Mechatronics Modules Navigation Robot control Robotics Robots Vision |
title | RHIZOME ARCHITECTURE: An Adaptive Neurobehavioral Control Architecture for Cognitive Mobile Robots—Application in a Vision-Based Indoor Robot Navigation Context |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RHIZOME%20ARCHITECTURE:%20An%20Adaptive%20Neurobehavioral%20Control%20Architecture%20for%20Cognitive%20Mobile%20Robots%E2%80%94Application%20in%20a%20Vision-Based%20Indoor%20Robot%20Navigation%20Context&rft.jtitle=International%20journal%20of%20social%20robotics&rft.au=Rojas-Castro,%20Dalia%20Marcela&rft.date=2020-07-01&rft.volume=12&rft.issue=3&rft.spage=659&rft.epage=688&rft.pages=659-688&rft.issn=1875-4791&rft.eissn=1875-4805&rft_id=info:doi/10.1007/s12369-019-00602-2&rft_dat=%3Cproquest_hal_p%3E2419779922%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419779922&rft_id=info:pmid/&rfr_iscdi=true |