Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances

To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2012-03, Vol.235 (3), p.603-614
Hauptverfasser: Djebbar, Reda, Rzigui, Touhami, Pétriacq, Pierre, Mauve, Caroline, Priault, Pierrick, Fresneau, Chantai, De Paepe, Marianne, Florez-Sarasa, Igor, Benhassaine-Kesri, Ghouziel, Streb, Peter, Gakière, Bertrand, Cornic, Gabriel, De Paepe, Rosine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 614
container_issue 3
container_start_page 603
container_title Planta
container_volume 235
creator Djebbar, Reda
Rzigui, Touhami
Pétriacq, Pierre
Mauve, Caroline
Priault, Pierrick
Fresneau, Chantai
De Paepe, Marianne
Florez-Sarasa, Igor
Benhassaine-Kesri, Ghouziel
Streb, Peter
Gakière, Bertrand
Cornic, Gabriel
De Paepe, Rosine
description To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.
doi_str_mv 10.1007/s00425-011-1524-7
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02648980v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43564770</jstor_id><sourcerecordid>43564770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-d811014c3f61c32835051b4f93ff0e1fc1c2fe855db8eb6529e5cf0231ab1ce43</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoModq3-AC-UUBDxYvTkaz4uS1FbWCgUvQ6ZTLKbJTMZkxlx_30zzLoFL7xKyHnOe5I8CL0l8JkAVF8SAKeiAEIKIigvqmdoQzijBQVeP0cbgLyHhokL9CqlA0AuVtVLdEEpAC0p36DxwaTRRTWFeMQ69KM3f_Ad7ox12plBH7EbulmbhLsY5t1-wlPwJqpBG9zmYj8qPblhh71RFqcp9GpSHquhw_tjF9Xsnc65S8a0NKXX6IVVPpk3p_US_fz29cfNbbG9_353c70tNBflVHQ1Ifm6mtmSaEZrJkCQltuGWQuGWE00taYWomtr05aCNkZoC5QR1RJtOLtEn9bcvfJyjK5X8SiDcvL2eiuXs_wBvG5q-E0y-3Flxxh-zSZNsndJG-_VYMKcZEN5UzJRVZm8-oc8hDkO-SEZYhUVrIQMkRXSMaQUjT3PJyAXcXIVJ7M4uYiTS_D7U_Dc9qY7d_w1lYEPJ0AlrbxdFLj0xIkSBJAmc3TlUi4NOxOfbvi_6e_WpkM2GM-hnImSVxWwR6C2ucY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923725360</pqid></control><display><type>article</type><title>Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Jstor Complete Legacy</source><creator>Djebbar, Reda ; Rzigui, Touhami ; Pétriacq, Pierre ; Mauve, Caroline ; Priault, Pierrick ; Fresneau, Chantai ; De Paepe, Marianne ; Florez-Sarasa, Igor ; Benhassaine-Kesri, Ghouziel ; Streb, Peter ; Gakière, Bertrand ; Cornic, Gabriel ; De Paepe, Rosine</creator><creatorcontrib>Djebbar, Reda ; Rzigui, Touhami ; Pétriacq, Pierre ; Mauve, Caroline ; Priault, Pierrick ; Fresneau, Chantai ; De Paepe, Marianne ; Florez-Sarasa, Igor ; Benhassaine-Kesri, Ghouziel ; Streb, Peter ; Gakière, Bertrand ; Cornic, Gabriel ; De Paepe, Rosine</creatorcontrib><description>To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-011-1524-7</identifier><identifier>PMID: 22002624</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Abscisic Acid - metabolism ; Adenosine Triphosphate - metabolism ; Agriculture ; Amino acids ; Biological and medical sciences ; Biomedical and Life Sciences ; Conductance ; Drought ; Drought resistance ; Drought tolerance ; Droughts ; Ecology ; Electron Transport Complex I - deficiency ; Electron Transport Complex I - genetics ; Electron Transport Complex I - metabolism ; Forestry ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant - genetics ; Gene Expression Regulation, Plant - physiology ; Genotypes ; Hydraulics ; Leaves ; Life Sciences ; Mitochondria ; Mutants ; Nicotiana - genetics ; Nicotiana - metabolism ; Nicotiana - physiology ; Organic acids ; Original Article ; Photosynthesis ; Plant cells ; Plant Leaves - genetics ; Plant Leaves - metabolism ; Plant Leaves - physiology ; Plant Sciences ; Plant Stomata - genetics ; Plant Stomata - metabolism ; Plant Stomata - physiology ; Plants ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Plants, Genetically Modified - physiology ; Respiration ; Stomatal conductance ; Water content</subject><ispartof>Planta, 2012-03, Vol.235 (3), p.603-614</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-d811014c3f61c32835051b4f93ff0e1fc1c2fe855db8eb6529e5cf0231ab1ce43</citedby><cites>FETCH-LOGICAL-c456t-d811014c3f61c32835051b4f93ff0e1fc1c2fe855db8eb6529e5cf0231ab1ce43</cites><orcidid>0000-0001-8151-7420 ; 0000-0002-7386-4198 ; 0000-0002-1862-7931 ; 0000-0002-1076-9433 ; 0000-0003-0285-5160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43564770$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43564770$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,41467,42536,51297,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25605019$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22002624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02648980$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Djebbar, Reda</creatorcontrib><creatorcontrib>Rzigui, Touhami</creatorcontrib><creatorcontrib>Pétriacq, Pierre</creatorcontrib><creatorcontrib>Mauve, Caroline</creatorcontrib><creatorcontrib>Priault, Pierrick</creatorcontrib><creatorcontrib>Fresneau, Chantai</creatorcontrib><creatorcontrib>De Paepe, Marianne</creatorcontrib><creatorcontrib>Florez-Sarasa, Igor</creatorcontrib><creatorcontrib>Benhassaine-Kesri, Ghouziel</creatorcontrib><creatorcontrib>Streb, Peter</creatorcontrib><creatorcontrib>Gakière, Bertrand</creatorcontrib><creatorcontrib>Cornic, Gabriel</creatorcontrib><creatorcontrib>De Paepe, Rosine</creatorcontrib><title>Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.</description><subject>Abscisic Acid - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Agriculture</subject><subject>Amino acids</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Conductance</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Drought tolerance</subject><subject>Droughts</subject><subject>Ecology</subject><subject>Electron Transport Complex I - deficiency</subject><subject>Electron Transport Complex I - genetics</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Genotypes</subject><subject>Hydraulics</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Mitochondria</subject><subject>Mutants</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Nicotiana - physiology</subject><subject>Organic acids</subject><subject>Original Article</subject><subject>Photosynthesis</subject><subject>Plant cells</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - physiology</subject><subject>Plant Sciences</subject><subject>Plant Stomata - genetics</subject><subject>Plant Stomata - metabolism</subject><subject>Plant Stomata - physiology</subject><subject>Plants</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Plants, Genetically Modified - physiology</subject><subject>Respiration</subject><subject>Stomatal conductance</subject><subject>Water content</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1rFDEUhoModq3-AC-UUBDxYvTkaz4uS1FbWCgUvQ6ZTLKbJTMZkxlx_30zzLoFL7xKyHnOe5I8CL0l8JkAVF8SAKeiAEIKIigvqmdoQzijBQVeP0cbgLyHhokL9CqlA0AuVtVLdEEpAC0p36DxwaTRRTWFeMQ69KM3f_Ad7ox12plBH7EbulmbhLsY5t1-wlPwJqpBG9zmYj8qPblhh71RFqcp9GpSHquhw_tjF9Xsnc65S8a0NKXX6IVVPpk3p_US_fz29cfNbbG9_353c70tNBflVHQ1Ifm6mtmSaEZrJkCQltuGWQuGWE00taYWomtr05aCNkZoC5QR1RJtOLtEn9bcvfJyjK5X8SiDcvL2eiuXs_wBvG5q-E0y-3Flxxh-zSZNsndJG-_VYMKcZEN5UzJRVZm8-oc8hDkO-SEZYhUVrIQMkRXSMaQUjT3PJyAXcXIVJ7M4uYiTS_D7U_Dc9qY7d_w1lYEPJ0AlrbxdFLj0xIkSBJAmc3TlUi4NOxOfbvi_6e_WpkM2GM-hnImSVxWwR6C2ucY</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Djebbar, Reda</creator><creator>Rzigui, Touhami</creator><creator>Pétriacq, Pierre</creator><creator>Mauve, Caroline</creator><creator>Priault, Pierrick</creator><creator>Fresneau, Chantai</creator><creator>De Paepe, Marianne</creator><creator>Florez-Sarasa, Igor</creator><creator>Benhassaine-Kesri, Ghouziel</creator><creator>Streb, Peter</creator><creator>Gakière, Bertrand</creator><creator>Cornic, Gabriel</creator><creator>De Paepe, Rosine</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8151-7420</orcidid><orcidid>https://orcid.org/0000-0002-7386-4198</orcidid><orcidid>https://orcid.org/0000-0002-1862-7931</orcidid><orcidid>https://orcid.org/0000-0002-1076-9433</orcidid><orcidid>https://orcid.org/0000-0003-0285-5160</orcidid></search><sort><creationdate>20120301</creationdate><title>Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances</title><author>Djebbar, Reda ; Rzigui, Touhami ; Pétriacq, Pierre ; Mauve, Caroline ; Priault, Pierrick ; Fresneau, Chantai ; De Paepe, Marianne ; Florez-Sarasa, Igor ; Benhassaine-Kesri, Ghouziel ; Streb, Peter ; Gakière, Bertrand ; Cornic, Gabriel ; De Paepe, Rosine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-d811014c3f61c32835051b4f93ff0e1fc1c2fe855db8eb6529e5cf0231ab1ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abscisic Acid - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Agriculture</topic><topic>Amino acids</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Conductance</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Drought tolerance</topic><topic>Droughts</topic><topic>Ecology</topic><topic>Electron Transport Complex I - deficiency</topic><topic>Electron Transport Complex I - genetics</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Genotypes</topic><topic>Hydraulics</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Mitochondria</topic><topic>Mutants</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Nicotiana - physiology</topic><topic>Organic acids</topic><topic>Original Article</topic><topic>Photosynthesis</topic><topic>Plant cells</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - physiology</topic><topic>Plant Sciences</topic><topic>Plant Stomata - genetics</topic><topic>Plant Stomata - metabolism</topic><topic>Plant Stomata - physiology</topic><topic>Plants</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Plants, Genetically Modified - physiology</topic><topic>Respiration</topic><topic>Stomatal conductance</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djebbar, Reda</creatorcontrib><creatorcontrib>Rzigui, Touhami</creatorcontrib><creatorcontrib>Pétriacq, Pierre</creatorcontrib><creatorcontrib>Mauve, Caroline</creatorcontrib><creatorcontrib>Priault, Pierrick</creatorcontrib><creatorcontrib>Fresneau, Chantai</creatorcontrib><creatorcontrib>De Paepe, Marianne</creatorcontrib><creatorcontrib>Florez-Sarasa, Igor</creatorcontrib><creatorcontrib>Benhassaine-Kesri, Ghouziel</creatorcontrib><creatorcontrib>Streb, Peter</creatorcontrib><creatorcontrib>Gakière, Bertrand</creatorcontrib><creatorcontrib>Cornic, Gabriel</creatorcontrib><creatorcontrib>De Paepe, Rosine</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djebbar, Reda</au><au>Rzigui, Touhami</au><au>Pétriacq, Pierre</au><au>Mauve, Caroline</au><au>Priault, Pierrick</au><au>Fresneau, Chantai</au><au>De Paepe, Marianne</au><au>Florez-Sarasa, Igor</au><au>Benhassaine-Kesri, Ghouziel</au><au>Streb, Peter</au><au>Gakière, Bertrand</au><au>Cornic, Gabriel</au><au>De Paepe, Rosine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>235</volume><issue>3</issue><spage>603</spage><epage>614</epage><pages>603-614</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22002624</pmid><doi>10.1007/s00425-011-1524-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8151-7420</orcidid><orcidid>https://orcid.org/0000-0002-7386-4198</orcidid><orcidid>https://orcid.org/0000-0002-1862-7931</orcidid><orcidid>https://orcid.org/0000-0002-1076-9433</orcidid><orcidid>https://orcid.org/0000-0003-0285-5160</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2012-03, Vol.235 (3), p.603-614
issn 0032-0935
1432-2048
language eng
recordid cdi_hal_primary_oai_HAL_hal_02648980v1
source MEDLINE; SpringerLink Journals; Jstor Complete Legacy
subjects Abscisic Acid - metabolism
Adenosine Triphosphate - metabolism
Agriculture
Amino acids
Biological and medical sciences
Biomedical and Life Sciences
Conductance
Drought
Drought resistance
Drought tolerance
Droughts
Ecology
Electron Transport Complex I - deficiency
Electron Transport Complex I - genetics
Electron Transport Complex I - metabolism
Forestry
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Plant - genetics
Gene Expression Regulation, Plant - physiology
Genotypes
Hydraulics
Leaves
Life Sciences
Mitochondria
Mutants
Nicotiana - genetics
Nicotiana - metabolism
Nicotiana - physiology
Organic acids
Original Article
Photosynthesis
Plant cells
Plant Leaves - genetics
Plant Leaves - metabolism
Plant Leaves - physiology
Plant Sciences
Plant Stomata - genetics
Plant Stomata - metabolism
Plant Stomata - physiology
Plants
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Plants, Genetically Modified - physiology
Respiration
Stomatal conductance
Water content
title Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Respiratory%20complex%20I%20deficiency%20induces%20drought%20tolerance%20by%20impacting%20leaf%20stomatal%20and%20hydraulic%20conductances&rft.jtitle=Planta&rft.au=Djebbar,%20Reda&rft.date=2012-03-01&rft.volume=235&rft.issue=3&rft.spage=603&rft.epage=614&rft.pages=603-614&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-011-1524-7&rft_dat=%3Cjstor_hal_p%3E43564770%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923725360&rft_id=info:pmid/22002624&rft_jstor_id=43564770&rfr_iscdi=true