Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances
To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyr...
Gespeichert in:
Veröffentlicht in: | Planta 2012-03, Vol.235 (3), p.603-614 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 614 |
---|---|
container_issue | 3 |
container_start_page | 603 |
container_title | Planta |
container_volume | 235 |
creator | Djebbar, Reda Rzigui, Touhami Pétriacq, Pierre Mauve, Caroline Priault, Pierrick Fresneau, Chantai De Paepe, Marianne Florez-Sarasa, Igor Benhassaine-Kesri, Ghouziel Streb, Peter Gakière, Bertrand Cornic, Gabriel De Paepe, Rosine |
description | To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances. |
doi_str_mv | 10.1007/s00425-011-1524-7 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02648980v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43564770</jstor_id><sourcerecordid>43564770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-d811014c3f61c32835051b4f93ff0e1fc1c2fe855db8eb6529e5cf0231ab1ce43</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoModq3-AC-UUBDxYvTkaz4uS1FbWCgUvQ6ZTLKbJTMZkxlx_30zzLoFL7xKyHnOe5I8CL0l8JkAVF8SAKeiAEIKIigvqmdoQzijBQVeP0cbgLyHhokL9CqlA0AuVtVLdEEpAC0p36DxwaTRRTWFeMQ69KM3f_Ad7ox12plBH7EbulmbhLsY5t1-wlPwJqpBG9zmYj8qPblhh71RFqcp9GpSHquhw_tjF9Xsnc65S8a0NKXX6IVVPpk3p_US_fz29cfNbbG9_353c70tNBflVHQ1Ifm6mtmSaEZrJkCQltuGWQuGWE00taYWomtr05aCNkZoC5QR1RJtOLtEn9bcvfJyjK5X8SiDcvL2eiuXs_wBvG5q-E0y-3Flxxh-zSZNsndJG-_VYMKcZEN5UzJRVZm8-oc8hDkO-SEZYhUVrIQMkRXSMaQUjT3PJyAXcXIVJ7M4uYiTS_D7U_Dc9qY7d_w1lYEPJ0AlrbxdFLj0xIkSBJAmc3TlUi4NOxOfbvi_6e_WpkM2GM-hnImSVxWwR6C2ucY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923725360</pqid></control><display><type>article</type><title>Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Jstor Complete Legacy</source><creator>Djebbar, Reda ; Rzigui, Touhami ; Pétriacq, Pierre ; Mauve, Caroline ; Priault, Pierrick ; Fresneau, Chantai ; De Paepe, Marianne ; Florez-Sarasa, Igor ; Benhassaine-Kesri, Ghouziel ; Streb, Peter ; Gakière, Bertrand ; Cornic, Gabriel ; De Paepe, Rosine</creator><creatorcontrib>Djebbar, Reda ; Rzigui, Touhami ; Pétriacq, Pierre ; Mauve, Caroline ; Priault, Pierrick ; Fresneau, Chantai ; De Paepe, Marianne ; Florez-Sarasa, Igor ; Benhassaine-Kesri, Ghouziel ; Streb, Peter ; Gakière, Bertrand ; Cornic, Gabriel ; De Paepe, Rosine</creatorcontrib><description>To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-011-1524-7</identifier><identifier>PMID: 22002624</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Abscisic Acid - metabolism ; Adenosine Triphosphate - metabolism ; Agriculture ; Amino acids ; Biological and medical sciences ; Biomedical and Life Sciences ; Conductance ; Drought ; Drought resistance ; Drought tolerance ; Droughts ; Ecology ; Electron Transport Complex I - deficiency ; Electron Transport Complex I - genetics ; Electron Transport Complex I - metabolism ; Forestry ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant - genetics ; Gene Expression Regulation, Plant - physiology ; Genotypes ; Hydraulics ; Leaves ; Life Sciences ; Mitochondria ; Mutants ; Nicotiana - genetics ; Nicotiana - metabolism ; Nicotiana - physiology ; Organic acids ; Original Article ; Photosynthesis ; Plant cells ; Plant Leaves - genetics ; Plant Leaves - metabolism ; Plant Leaves - physiology ; Plant Sciences ; Plant Stomata - genetics ; Plant Stomata - metabolism ; Plant Stomata - physiology ; Plants ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Plants, Genetically Modified - physiology ; Respiration ; Stomatal conductance ; Water content</subject><ispartof>Planta, 2012-03, Vol.235 (3), p.603-614</ispartof><rights>Springer-Verlag 2011</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-d811014c3f61c32835051b4f93ff0e1fc1c2fe855db8eb6529e5cf0231ab1ce43</citedby><cites>FETCH-LOGICAL-c456t-d811014c3f61c32835051b4f93ff0e1fc1c2fe855db8eb6529e5cf0231ab1ce43</cites><orcidid>0000-0001-8151-7420 ; 0000-0002-7386-4198 ; 0000-0002-1862-7931 ; 0000-0002-1076-9433 ; 0000-0003-0285-5160</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43564770$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43564770$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,41467,42536,51297,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25605019$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22002624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02648980$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Djebbar, Reda</creatorcontrib><creatorcontrib>Rzigui, Touhami</creatorcontrib><creatorcontrib>Pétriacq, Pierre</creatorcontrib><creatorcontrib>Mauve, Caroline</creatorcontrib><creatorcontrib>Priault, Pierrick</creatorcontrib><creatorcontrib>Fresneau, Chantai</creatorcontrib><creatorcontrib>De Paepe, Marianne</creatorcontrib><creatorcontrib>Florez-Sarasa, Igor</creatorcontrib><creatorcontrib>Benhassaine-Kesri, Ghouziel</creatorcontrib><creatorcontrib>Streb, Peter</creatorcontrib><creatorcontrib>Gakière, Bertrand</creatorcontrib><creatorcontrib>Cornic, Gabriel</creatorcontrib><creatorcontrib>De Paepe, Rosine</creatorcontrib><title>Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.</description><subject>Abscisic Acid - metabolism</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Agriculture</subject><subject>Amino acids</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Conductance</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Drought tolerance</subject><subject>Droughts</subject><subject>Ecology</subject><subject>Electron Transport Complex I - deficiency</subject><subject>Electron Transport Complex I - genetics</subject><subject>Electron Transport Complex I - metabolism</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant - genetics</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Genotypes</subject><subject>Hydraulics</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Mitochondria</subject><subject>Mutants</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Nicotiana - physiology</subject><subject>Organic acids</subject><subject>Original Article</subject><subject>Photosynthesis</subject><subject>Plant cells</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Leaves - physiology</subject><subject>Plant Sciences</subject><subject>Plant Stomata - genetics</subject><subject>Plant Stomata - metabolism</subject><subject>Plant Stomata - physiology</subject><subject>Plants</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Plants, Genetically Modified - physiology</subject><subject>Respiration</subject><subject>Stomatal conductance</subject><subject>Water content</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1rFDEUhoModq3-AC-UUBDxYvTkaz4uS1FbWCgUvQ6ZTLKbJTMZkxlx_30zzLoFL7xKyHnOe5I8CL0l8JkAVF8SAKeiAEIKIigvqmdoQzijBQVeP0cbgLyHhokL9CqlA0AuVtVLdEEpAC0p36DxwaTRRTWFeMQ69KM3f_Ad7ox12plBH7EbulmbhLsY5t1-wlPwJqpBG9zmYj8qPblhh71RFqcp9GpSHquhw_tjF9Xsnc65S8a0NKXX6IVVPpk3p_US_fz29cfNbbG9_353c70tNBflVHQ1Ifm6mtmSaEZrJkCQltuGWQuGWE00taYWomtr05aCNkZoC5QR1RJtOLtEn9bcvfJyjK5X8SiDcvL2eiuXs_wBvG5q-E0y-3Flxxh-zSZNsndJG-_VYMKcZEN5UzJRVZm8-oc8hDkO-SEZYhUVrIQMkRXSMaQUjT3PJyAXcXIVJ7M4uYiTS_D7U_Dc9qY7d_w1lYEPJ0AlrbxdFLj0xIkSBJAmc3TlUi4NOxOfbvi_6e_WpkM2GM-hnImSVxWwR6C2ucY</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Djebbar, Reda</creator><creator>Rzigui, Touhami</creator><creator>Pétriacq, Pierre</creator><creator>Mauve, Caroline</creator><creator>Priault, Pierrick</creator><creator>Fresneau, Chantai</creator><creator>De Paepe, Marianne</creator><creator>Florez-Sarasa, Igor</creator><creator>Benhassaine-Kesri, Ghouziel</creator><creator>Streb, Peter</creator><creator>Gakière, Bertrand</creator><creator>Cornic, Gabriel</creator><creator>De Paepe, Rosine</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8151-7420</orcidid><orcidid>https://orcid.org/0000-0002-7386-4198</orcidid><orcidid>https://orcid.org/0000-0002-1862-7931</orcidid><orcidid>https://orcid.org/0000-0002-1076-9433</orcidid><orcidid>https://orcid.org/0000-0003-0285-5160</orcidid></search><sort><creationdate>20120301</creationdate><title>Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances</title><author>Djebbar, Reda ; Rzigui, Touhami ; Pétriacq, Pierre ; Mauve, Caroline ; Priault, Pierrick ; Fresneau, Chantai ; De Paepe, Marianne ; Florez-Sarasa, Igor ; Benhassaine-Kesri, Ghouziel ; Streb, Peter ; Gakière, Bertrand ; Cornic, Gabriel ; De Paepe, Rosine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-d811014c3f61c32835051b4f93ff0e1fc1c2fe855db8eb6529e5cf0231ab1ce43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abscisic Acid - metabolism</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Agriculture</topic><topic>Amino acids</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Conductance</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Drought tolerance</topic><topic>Droughts</topic><topic>Ecology</topic><topic>Electron Transport Complex I - deficiency</topic><topic>Electron Transport Complex I - genetics</topic><topic>Electron Transport Complex I - metabolism</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant - genetics</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Genotypes</topic><topic>Hydraulics</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Mitochondria</topic><topic>Mutants</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Nicotiana - physiology</topic><topic>Organic acids</topic><topic>Original Article</topic><topic>Photosynthesis</topic><topic>Plant cells</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Leaves - physiology</topic><topic>Plant Sciences</topic><topic>Plant Stomata - genetics</topic><topic>Plant Stomata - metabolism</topic><topic>Plant Stomata - physiology</topic><topic>Plants</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Plants, Genetically Modified - physiology</topic><topic>Respiration</topic><topic>Stomatal conductance</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djebbar, Reda</creatorcontrib><creatorcontrib>Rzigui, Touhami</creatorcontrib><creatorcontrib>Pétriacq, Pierre</creatorcontrib><creatorcontrib>Mauve, Caroline</creatorcontrib><creatorcontrib>Priault, Pierrick</creatorcontrib><creatorcontrib>Fresneau, Chantai</creatorcontrib><creatorcontrib>De Paepe, Marianne</creatorcontrib><creatorcontrib>Florez-Sarasa, Igor</creatorcontrib><creatorcontrib>Benhassaine-Kesri, Ghouziel</creatorcontrib><creatorcontrib>Streb, Peter</creatorcontrib><creatorcontrib>Gakière, Bertrand</creatorcontrib><creatorcontrib>Cornic, Gabriel</creatorcontrib><creatorcontrib>De Paepe, Rosine</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djebbar, Reda</au><au>Rzigui, Touhami</au><au>Pétriacq, Pierre</au><au>Mauve, Caroline</au><au>Priault, Pierrick</au><au>Fresneau, Chantai</au><au>De Paepe, Marianne</au><au>Florez-Sarasa, Igor</au><au>Benhassaine-Kesri, Ghouziel</au><au>Streb, Peter</au><au>Gakière, Bertrand</au><au>Cornic, Gabriel</au><au>De Paepe, Rosine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>235</volume><issue>3</issue><spage>603</spage><epage>614</epage><pages>603-614</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>22002624</pmid><doi>10.1007/s00425-011-1524-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8151-7420</orcidid><orcidid>https://orcid.org/0000-0002-7386-4198</orcidid><orcidid>https://orcid.org/0000-0002-1862-7931</orcidid><orcidid>https://orcid.org/0000-0002-1076-9433</orcidid><orcidid>https://orcid.org/0000-0003-0285-5160</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2012-03, Vol.235 (3), p.603-614 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02648980v1 |
source | MEDLINE; SpringerLink Journals; Jstor Complete Legacy |
subjects | Abscisic Acid - metabolism Adenosine Triphosphate - metabolism Agriculture Amino acids Biological and medical sciences Biomedical and Life Sciences Conductance Drought Drought resistance Drought tolerance Droughts Ecology Electron Transport Complex I - deficiency Electron Transport Complex I - genetics Electron Transport Complex I - metabolism Forestry Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Plant - genetics Gene Expression Regulation, Plant - physiology Genotypes Hydraulics Leaves Life Sciences Mitochondria Mutants Nicotiana - genetics Nicotiana - metabolism Nicotiana - physiology Organic acids Original Article Photosynthesis Plant cells Plant Leaves - genetics Plant Leaves - metabolism Plant Leaves - physiology Plant Sciences Plant Stomata - genetics Plant Stomata - metabolism Plant Stomata - physiology Plants Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Plants, Genetically Modified - physiology Respiration Stomatal conductance Water content |
title | Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Respiratory%20complex%20I%20deficiency%20induces%20drought%20tolerance%20by%20impacting%20leaf%20stomatal%20and%20hydraulic%20conductances&rft.jtitle=Planta&rft.au=Djebbar,%20Reda&rft.date=2012-03-01&rft.volume=235&rft.issue=3&rft.spage=603&rft.epage=614&rft.pages=603-614&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-011-1524-7&rft_dat=%3Cjstor_hal_p%3E43564770%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923725360&rft_id=info:pmid/22002624&rft_jstor_id=43564770&rfr_iscdi=true |