Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding

Radial hydride precipitation in stress relieved Zircaloy-4 fuel claddings is studied using a new thermal–mechanical test. Two maximum temperatures for radial hydride precipitation heat treatment are studied, 350 and 450°C with hydrogen contents ranging between 50 and 600wppm. The new test provides t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2014-10, Vol.453 (1-3), p.131-150
Hauptverfasser: Desquines, J., Drouan, D., Billone, M., Puls, M.P., March, P., Fourgeaud, S., Getrey, C., Elbaz, V., Philippe, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150
container_issue 1-3
container_start_page 131
container_title Journal of nuclear materials
container_volume 453
creator Desquines, J.
Drouan, D.
Billone, M.
Puls, M.P.
March, P.
Fourgeaud, S.
Getrey, C.
Elbaz, V.
Philippe, M.
description Radial hydride precipitation in stress relieved Zircaloy-4 fuel claddings is studied using a new thermal–mechanical test. Two maximum temperatures for radial hydride precipitation heat treatment are studied, 350 and 450°C with hydrogen contents ranging between 50 and 600wppm. The new test provides two main results of interest: the minimum hoop stress required to precipitate radial hydrides and a maximum stress above which, all hydrides precipitate in the radial direction. Based on these two extreme stress conditions, a model is derived to determine the stress level required to obtain a given fraction of radial hydrides after high temperature thermal–mechanical heat treatment. The proposed model is validated using metallographic observation data on pressurized tubes cooled down under constant pressure. Most of the samples with reoriented hydrides are further subjected to a ductility test. Using finite element modeling, the test results are analyzed in terms of crack nucleation within radial hydrides at the outer diameter and crack growth through the thickness of the tubular samples. The combination of test results shows that samples with hydrogen contents of about 100wppm had the lowest ductility.
doi_str_mv 10.1016/j.jnucmat.2014.06.049
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02641725v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311514004061</els_id><sourcerecordid>S0022311514004061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-8561c4e801f39aa90e3da5ecdab578e71ef5bab50ab0be503b51fc86f49d58cf3</originalsourceid><addsrcrecordid>eNqFkMFKAzEQhoMoWKuPIOTqYdfJ7ma7exIRtYWCF714CbPJpKZssyVJC317t1a8epph-P4f5mPsVkAuQNT363ztd3qDKS9AVDnUOVTtGZuIZlZmVVPAOZsAFEVWCiEv2VWMawCQLcgJiwtv-x15TXywPNFmSwHTLhBHb_jXwYRhRZ7rwSfyiQ-exxQoxsx5s9NkeEDjsP8hnSG-DaTd1iVMbmSd558uaOyHQ1Zx3aMxzq-u2YXFPtLN75yyj5fn96d5tnx7XTw9LjNdVmXKGlkLXVEDwpYtYgtUGpSkDXZy1tBMkJXduAN20JGEspPC6qa2VWtko205ZXen3i_s1Ta4DYaDGtCp-eNSHW9Q1JWYFXIvRlaeWB2GGAPZv4AAdbSs1urXsjpaVlCr0fKYezjlaHxk7yioqN1Rp3GjiaTM4P5p-Abpo4uK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding</title><source>Elsevier ScienceDirect Journals</source><creator>Desquines, J. ; Drouan, D. ; Billone, M. ; Puls, M.P. ; March, P. ; Fourgeaud, S. ; Getrey, C. ; Elbaz, V. ; Philippe, M.</creator><creatorcontrib>Desquines, J. ; Drouan, D. ; Billone, M. ; Puls, M.P. ; March, P. ; Fourgeaud, S. ; Getrey, C. ; Elbaz, V. ; Philippe, M.</creatorcontrib><description>Radial hydride precipitation in stress relieved Zircaloy-4 fuel claddings is studied using a new thermal–mechanical test. Two maximum temperatures for radial hydride precipitation heat treatment are studied, 350 and 450°C with hydrogen contents ranging between 50 and 600wppm. The new test provides two main results of interest: the minimum hoop stress required to precipitate radial hydrides and a maximum stress above which, all hydrides precipitate in the radial direction. Based on these two extreme stress conditions, a model is derived to determine the stress level required to obtain a given fraction of radial hydrides after high temperature thermal–mechanical heat treatment. The proposed model is validated using metallographic observation data on pressurized tubes cooled down under constant pressure. Most of the samples with reoriented hydrides are further subjected to a ductility test. Using finite element modeling, the test results are analyzed in terms of crack nucleation within radial hydrides at the outer diameter and crack growth through the thickness of the tubular samples. The combination of test results shows that samples with hydrogen contents of about 100wppm had the lowest ductility.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2014.06.049</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Physics</subject><ispartof>Journal of nuclear materials, 2014-10, Vol.453 (1-3), p.131-150</ispartof><rights>2014 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-8561c4e801f39aa90e3da5ecdab578e71ef5bab50ab0be503b51fc86f49d58cf3</citedby><cites>FETCH-LOGICAL-c343t-8561c4e801f39aa90e3da5ecdab578e71ef5bab50ab0be503b51fc86f49d58cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022311514004061$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02641725$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Desquines, J.</creatorcontrib><creatorcontrib>Drouan, D.</creatorcontrib><creatorcontrib>Billone, M.</creatorcontrib><creatorcontrib>Puls, M.P.</creatorcontrib><creatorcontrib>March, P.</creatorcontrib><creatorcontrib>Fourgeaud, S.</creatorcontrib><creatorcontrib>Getrey, C.</creatorcontrib><creatorcontrib>Elbaz, V.</creatorcontrib><creatorcontrib>Philippe, M.</creatorcontrib><title>Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding</title><title>Journal of nuclear materials</title><description>Radial hydride precipitation in stress relieved Zircaloy-4 fuel claddings is studied using a new thermal–mechanical test. Two maximum temperatures for radial hydride precipitation heat treatment are studied, 350 and 450°C with hydrogen contents ranging between 50 and 600wppm. The new test provides two main results of interest: the minimum hoop stress required to precipitate radial hydrides and a maximum stress above which, all hydrides precipitate in the radial direction. Based on these two extreme stress conditions, a model is derived to determine the stress level required to obtain a given fraction of radial hydrides after high temperature thermal–mechanical heat treatment. The proposed model is validated using metallographic observation data on pressurized tubes cooled down under constant pressure. Most of the samples with reoriented hydrides are further subjected to a ductility test. Using finite element modeling, the test results are analyzed in terms of crack nucleation within radial hydrides at the outer diameter and crack growth through the thickness of the tubular samples. The combination of test results shows that samples with hydrogen contents of about 100wppm had the lowest ductility.</description><subject>Physics</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEQhoMoWKuPIOTqYdfJ7ma7exIRtYWCF714CbPJpKZssyVJC317t1a8epph-P4f5mPsVkAuQNT363ztd3qDKS9AVDnUOVTtGZuIZlZmVVPAOZsAFEVWCiEv2VWMawCQLcgJiwtv-x15TXywPNFmSwHTLhBHb_jXwYRhRZ7rwSfyiQ-exxQoxsx5s9NkeEDjsP8hnSG-DaTd1iVMbmSd558uaOyHQ1Zx3aMxzq-u2YXFPtLN75yyj5fn96d5tnx7XTw9LjNdVmXKGlkLXVEDwpYtYgtUGpSkDXZy1tBMkJXduAN20JGEspPC6qa2VWtko205ZXen3i_s1Ta4DYaDGtCp-eNSHW9Q1JWYFXIvRlaeWB2GGAPZv4AAdbSs1urXsjpaVlCr0fKYezjlaHxk7yioqN1Rp3GjiaTM4P5p-Abpo4uK</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Desquines, J.</creator><creator>Drouan, D.</creator><creator>Billone, M.</creator><creator>Puls, M.P.</creator><creator>March, P.</creator><creator>Fourgeaud, S.</creator><creator>Getrey, C.</creator><creator>Elbaz, V.</creator><creator>Philippe, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>201410</creationdate><title>Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding</title><author>Desquines, J. ; Drouan, D. ; Billone, M. ; Puls, M.P. ; March, P. ; Fourgeaud, S. ; Getrey, C. ; Elbaz, V. ; Philippe, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-8561c4e801f39aa90e3da5ecdab578e71ef5bab50ab0be503b51fc86f49d58cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desquines, J.</creatorcontrib><creatorcontrib>Drouan, D.</creatorcontrib><creatorcontrib>Billone, M.</creatorcontrib><creatorcontrib>Puls, M.P.</creatorcontrib><creatorcontrib>March, P.</creatorcontrib><creatorcontrib>Fourgeaud, S.</creatorcontrib><creatorcontrib>Getrey, C.</creatorcontrib><creatorcontrib>Elbaz, V.</creatorcontrib><creatorcontrib>Philippe, M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desquines, J.</au><au>Drouan, D.</au><au>Billone, M.</au><au>Puls, M.P.</au><au>March, P.</au><au>Fourgeaud, S.</au><au>Getrey, C.</au><au>Elbaz, V.</au><au>Philippe, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding</atitle><jtitle>Journal of nuclear materials</jtitle><date>2014-10</date><risdate>2014</risdate><volume>453</volume><issue>1-3</issue><spage>131</spage><epage>150</epage><pages>131-150</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Radial hydride precipitation in stress relieved Zircaloy-4 fuel claddings is studied using a new thermal–mechanical test. Two maximum temperatures for radial hydride precipitation heat treatment are studied, 350 and 450°C with hydrogen contents ranging between 50 and 600wppm. The new test provides two main results of interest: the minimum hoop stress required to precipitate radial hydrides and a maximum stress above which, all hydrides precipitate in the radial direction. Based on these two extreme stress conditions, a model is derived to determine the stress level required to obtain a given fraction of radial hydrides after high temperature thermal–mechanical heat treatment. The proposed model is validated using metallographic observation data on pressurized tubes cooled down under constant pressure. Most of the samples with reoriented hydrides are further subjected to a ductility test. Using finite element modeling, the test results are analyzed in terms of crack nucleation within radial hydrides at the outer diameter and crack growth through the thickness of the tubular samples. The combination of test results shows that samples with hydrogen contents of about 100wppm had the lowest ductility.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2014.06.049</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2014-10, Vol.453 (1-3), p.131-150
issn 0022-3115
1873-4820
language eng
recordid cdi_hal_primary_oai_HAL_hal_02641725v1
source Elsevier ScienceDirect Journals
subjects Physics
title Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A00%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20temperature%20and%20hydrogen%20content%20on%20stress-induced%20radial%20hydride%20precipitation%20in%20Zircaloy-4%20cladding&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Desquines,%20J.&rft.date=2014-10&rft.volume=453&rft.issue=1-3&rft.spage=131&rft.epage=150&rft.pages=131-150&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2014.06.049&rft_dat=%3Celsevier_hal_p%3ES0022311514004061%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022311514004061&rfr_iscdi=true