Electron Density Distributions in Saturn's Ionosphere
Between 26 April and 15 September 2017, Cassini executed 23 highly inclined Grand Finale orbits through a new frontier for space exploration, the narrow region between Saturn and the D Ring, providing the first opportunity for obtaining in situ ionospheric measurements. During the Grand Finale orbit...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2019-03, Vol.46 (6), p.3061-3068 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3068 |
---|---|
container_issue | 6 |
container_start_page | 3061 |
container_title | Geophysical research letters |
container_volume | 46 |
creator | Persoon, A. M. Kurth, W. S. Gurnett, D. A. Groene, J. B. Sulaiman, A. H. Wahlund, J.‐E. Morooka, M. W. Hadid, L. Z. Nagy, A. F. Waite, J. H. Cravens, T. E. |
description | Between 26 April and 15 September 2017, Cassini executed 23 highly inclined Grand Finale orbits through a new frontier for space exploration, the narrow region between Saturn and the D Ring, providing the first opportunity for obtaining in situ ionospheric measurements. During the Grand Finale orbits, the Radio and Plasma Wave Science instrument observed broadband whistler mode emissions and narrowband upper hybrid frequency emissions. Using known wave propagation characteristics of these two plasma wave modes, the electron density is derived over a broad range of ionospheric latitudes and altitudes. A two‐part exponential scale height model is fitted to the electron density measurements. The model yields a double‐layered ionosphere with plasma scale heights of 545/575 km for the northern/southern hemispheres below 4,500 km and plasma scale heights of 4,780/2,360 km for the northern/southern hemispheres above 4,500 km. The interpretation of these layers involves the interaction between the rings and the ionosphere.
Plain Language Summary
For the final 5 months of the Cassini mission in 2017, the spacecraft executed 23 orbits through a new frontier for space exploration, the narrow region between Saturn and the innermost of Saturn's main rings, the D Ring. For the first time in the history of space exploration, the Cassini instruments were able to take measurements inside Saturn's ionosphere. This paper provides the density distribution of Saturn's ionospheric electrons, derived from plasma waves detected by the Radio and Plasma Wave Science instrument. The electron density distributions with altitude and latitude show that the ionospheric electron densities peak at 10,000 particles per cubic centimeter at low altitudes in the equatorial region and drop below 100 particles per cubic centimeter at higher altitudes and latitudes. Two simple ionospheric scale height density models for the northern and southern hemispheres are presented.
Key Points
We present the first in situ measurements of the electron density in the low to middle latitudes of Saturn's ionosphere
The distribution of electron density measurements with altitude shows evidence of a two‐layered ionospheric electron density distribution up to an altitude of 15,000 km
We present a scale height electron density model for a double‐layered ionosphere for both the northern and southern hemispheres |
doi_str_mv | 10.1029/2018GL078020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02640930v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207465528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4449-65833e0e9ab403b899574d968c343487a4e171c437bdad5551661ede3e605ea3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqzR-w4EEEVyffybG0tRYWBO09ZHdTmrJuarJV-u_dsiKePM0wPLwML0LXGB4wEP1IAKtFAVIBgRM0wpqxXAHIUzQC0P1OpDhHFyltAYACxSPE542ruhjabOba5LtDNvOpi77cdz60KfNt9ma7fWxvU7YMbUi7jYvuEp2tbZPc1c8co9XTfDV9zouXxXI6KfKKMaZzwRWlDpy2JQNaKq25ZLUWqqKMMiUtc1jiilFZ1rbmnGMhsKsddQK4s3SM7obYjW3MLvp3Gw8mWG-eJ4U53oAIBprCJ-7tzWB3MXzsXerMNvRv998ZQkAywTlRvbofVBVDStGtf2MxmGOH5m-HPScD__KNO_xrzeK14FJoTb8BP3pvUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207465528</pqid></control><display><type>article</type><title>Electron Density Distributions in Saturn's Ionosphere</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Persoon, A. M. ; Kurth, W. S. ; Gurnett, D. A. ; Groene, J. B. ; Sulaiman, A. H. ; Wahlund, J.‐E. ; Morooka, M. W. ; Hadid, L. Z. ; Nagy, A. F. ; Waite, J. H. ; Cravens, T. E.</creator><creatorcontrib>Persoon, A. M. ; Kurth, W. S. ; Gurnett, D. A. ; Groene, J. B. ; Sulaiman, A. H. ; Wahlund, J.‐E. ; Morooka, M. W. ; Hadid, L. Z. ; Nagy, A. F. ; Waite, J. H. ; Cravens, T. E.</creatorcontrib><description>Between 26 April and 15 September 2017, Cassini executed 23 highly inclined Grand Finale orbits through a new frontier for space exploration, the narrow region between Saturn and the D Ring, providing the first opportunity for obtaining in situ ionospheric measurements. During the Grand Finale orbits, the Radio and Plasma Wave Science instrument observed broadband whistler mode emissions and narrowband upper hybrid frequency emissions. Using known wave propagation characteristics of these two plasma wave modes, the electron density is derived over a broad range of ionospheric latitudes and altitudes. A two‐part exponential scale height model is fitted to the electron density measurements. The model yields a double‐layered ionosphere with plasma scale heights of 545/575 km for the northern/southern hemispheres below 4,500 km and plasma scale heights of 4,780/2,360 km for the northern/southern hemispheres above 4,500 km. The interpretation of these layers involves the interaction between the rings and the ionosphere.
Plain Language Summary
For the final 5 months of the Cassini mission in 2017, the spacecraft executed 23 orbits through a new frontier for space exploration, the narrow region between Saturn and the innermost of Saturn's main rings, the D Ring. For the first time in the history of space exploration, the Cassini instruments were able to take measurements inside Saturn's ionosphere. This paper provides the density distribution of Saturn's ionospheric electrons, derived from plasma waves detected by the Radio and Plasma Wave Science instrument. The electron density distributions with altitude and latitude show that the ionospheric electron densities peak at 10,000 particles per cubic centimeter at low altitudes in the equatorial region and drop below 100 particles per cubic centimeter at higher altitudes and latitudes. Two simple ionospheric scale height density models for the northern and southern hemispheres are presented.
Key Points
We present the first in situ measurements of the electron density in the low to middle latitudes of Saturn's ionosphere
The distribution of electron density measurements with altitude shows evidence of a two‐layered ionospheric electron density distribution up to an altitude of 15,000 km
We present a scale height electron density model for a double‐layered ionosphere for both the northern and southern hemispheres</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2018GL078020</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Astrophysics ; Broadband ; Cassini mission ; Density ; Density distribution ; Earth and Planetary Astrophysics ; electron densities ; Electron density measurement ; Electrons ; Emissions ; Equatorial regions ; Exploration ; Height ; Hemispheres ; Instruments ; Ionosphere ; ionospheric layers ; Ionospheric measurements ; Latitude ; Low altitude ; Narrowband ; Orbits ; Particle physics ; Physics ; Plasma ; Plasma Physics ; plasma scale height ; Plasma waves ; Radio waves ; Saturn ; Saturn ionosphere ; Saturn rings ; Saturn's ionosphere ; Scale height ; scale height density model ; Space exploration ; Spacecraft ; Wave propagation</subject><ispartof>Geophysical research letters, 2019-03, Vol.46 (6), p.3061-3068</ispartof><rights>2019. The Authors.</rights><rights>2019. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4449-65833e0e9ab403b899574d968c343487a4e171c437bdad5551661ede3e605ea3</citedby><cites>FETCH-LOGICAL-c4449-65833e0e9ab403b899574d968c343487a4e171c437bdad5551661ede3e605ea3</cites><orcidid>0000-0003-2403-0282 ; 0000-0002-8587-0202 ; 0000-0002-1978-1025 ; 0000-0002-1252-4755 ; 0000-0001-9958-0241 ; 0000-0002-2107-5859 ; 0000-0002-0971-5016 ; 0000-0002-5471-6202 ; 0000-0003-0912-8353 ; 0000-0001-8161-2225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GL078020$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GL078020$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02640930$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Persoon, A. M.</creatorcontrib><creatorcontrib>Kurth, W. S.</creatorcontrib><creatorcontrib>Gurnett, D. A.</creatorcontrib><creatorcontrib>Groene, J. B.</creatorcontrib><creatorcontrib>Sulaiman, A. H.</creatorcontrib><creatorcontrib>Wahlund, J.‐E.</creatorcontrib><creatorcontrib>Morooka, M. W.</creatorcontrib><creatorcontrib>Hadid, L. Z.</creatorcontrib><creatorcontrib>Nagy, A. F.</creatorcontrib><creatorcontrib>Waite, J. H.</creatorcontrib><creatorcontrib>Cravens, T. E.</creatorcontrib><title>Electron Density Distributions in Saturn's Ionosphere</title><title>Geophysical research letters</title><description>Between 26 April and 15 September 2017, Cassini executed 23 highly inclined Grand Finale orbits through a new frontier for space exploration, the narrow region between Saturn and the D Ring, providing the first opportunity for obtaining in situ ionospheric measurements. During the Grand Finale orbits, the Radio and Plasma Wave Science instrument observed broadband whistler mode emissions and narrowband upper hybrid frequency emissions. Using known wave propagation characteristics of these two plasma wave modes, the electron density is derived over a broad range of ionospheric latitudes and altitudes. A two‐part exponential scale height model is fitted to the electron density measurements. The model yields a double‐layered ionosphere with plasma scale heights of 545/575 km for the northern/southern hemispheres below 4,500 km and plasma scale heights of 4,780/2,360 km for the northern/southern hemispheres above 4,500 km. The interpretation of these layers involves the interaction between the rings and the ionosphere.
Plain Language Summary
For the final 5 months of the Cassini mission in 2017, the spacecraft executed 23 orbits through a new frontier for space exploration, the narrow region between Saturn and the innermost of Saturn's main rings, the D Ring. For the first time in the history of space exploration, the Cassini instruments were able to take measurements inside Saturn's ionosphere. This paper provides the density distribution of Saturn's ionospheric electrons, derived from plasma waves detected by the Radio and Plasma Wave Science instrument. The electron density distributions with altitude and latitude show that the ionospheric electron densities peak at 10,000 particles per cubic centimeter at low altitudes in the equatorial region and drop below 100 particles per cubic centimeter at higher altitudes and latitudes. Two simple ionospheric scale height density models for the northern and southern hemispheres are presented.
Key Points
We present the first in situ measurements of the electron density in the low to middle latitudes of Saturn's ionosphere
The distribution of electron density measurements with altitude shows evidence of a two‐layered ionospheric electron density distribution up to an altitude of 15,000 km
We present a scale height electron density model for a double‐layered ionosphere for both the northern and southern hemispheres</description><subject>Astrophysics</subject><subject>Broadband</subject><subject>Cassini mission</subject><subject>Density</subject><subject>Density distribution</subject><subject>Earth and Planetary Astrophysics</subject><subject>electron densities</subject><subject>Electron density measurement</subject><subject>Electrons</subject><subject>Emissions</subject><subject>Equatorial regions</subject><subject>Exploration</subject><subject>Height</subject><subject>Hemispheres</subject><subject>Instruments</subject><subject>Ionosphere</subject><subject>ionospheric layers</subject><subject>Ionospheric measurements</subject><subject>Latitude</subject><subject>Low altitude</subject><subject>Narrowband</subject><subject>Orbits</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Plasma</subject><subject>Plasma Physics</subject><subject>plasma scale height</subject><subject>Plasma waves</subject><subject>Radio waves</subject><subject>Saturn</subject><subject>Saturn ionosphere</subject><subject>Saturn rings</subject><subject>Saturn's ionosphere</subject><subject>Scale height</subject><subject>scale height density model</subject><subject>Space exploration</subject><subject>Spacecraft</subject><subject>Wave propagation</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90E1LAzEQBuAgCtbqzR-w4EEEVyffybG0tRYWBO09ZHdTmrJuarJV-u_dsiKePM0wPLwML0LXGB4wEP1IAKtFAVIBgRM0wpqxXAHIUzQC0P1OpDhHFyltAYACxSPE542ruhjabOba5LtDNvOpi77cdz60KfNt9ma7fWxvU7YMbUi7jYvuEp2tbZPc1c8co9XTfDV9zouXxXI6KfKKMaZzwRWlDpy2JQNaKq25ZLUWqqKMMiUtc1jiilFZ1rbmnGMhsKsddQK4s3SM7obYjW3MLvp3Gw8mWG-eJ4U53oAIBprCJ-7tzWB3MXzsXerMNvRv998ZQkAywTlRvbofVBVDStGtf2MxmGOH5m-HPScD__KNO_xrzeK14FJoTb8BP3pvUQ</recordid><startdate>20190328</startdate><enddate>20190328</enddate><creator>Persoon, A. M.</creator><creator>Kurth, W. S.</creator><creator>Gurnett, D. A.</creator><creator>Groene, J. B.</creator><creator>Sulaiman, A. H.</creator><creator>Wahlund, J.‐E.</creator><creator>Morooka, M. W.</creator><creator>Hadid, L. Z.</creator><creator>Nagy, A. F.</creator><creator>Waite, J. H.</creator><creator>Cravens, T. E.</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2403-0282</orcidid><orcidid>https://orcid.org/0000-0002-8587-0202</orcidid><orcidid>https://orcid.org/0000-0002-1978-1025</orcidid><orcidid>https://orcid.org/0000-0002-1252-4755</orcidid><orcidid>https://orcid.org/0000-0001-9958-0241</orcidid><orcidid>https://orcid.org/0000-0002-2107-5859</orcidid><orcidid>https://orcid.org/0000-0002-0971-5016</orcidid><orcidid>https://orcid.org/0000-0002-5471-6202</orcidid><orcidid>https://orcid.org/0000-0003-0912-8353</orcidid><orcidid>https://orcid.org/0000-0001-8161-2225</orcidid></search><sort><creationdate>20190328</creationdate><title>Electron Density Distributions in Saturn's Ionosphere</title><author>Persoon, A. M. ; Kurth, W. S. ; Gurnett, D. A. ; Groene, J. B. ; Sulaiman, A. H. ; Wahlund, J.‐E. ; Morooka, M. W. ; Hadid, L. Z. ; Nagy, A. F. ; Waite, J. H. ; Cravens, T. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4449-65833e0e9ab403b899574d968c343487a4e171c437bdad5551661ede3e605ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astrophysics</topic><topic>Broadband</topic><topic>Cassini mission</topic><topic>Density</topic><topic>Density distribution</topic><topic>Earth and Planetary Astrophysics</topic><topic>electron densities</topic><topic>Electron density measurement</topic><topic>Electrons</topic><topic>Emissions</topic><topic>Equatorial regions</topic><topic>Exploration</topic><topic>Height</topic><topic>Hemispheres</topic><topic>Instruments</topic><topic>Ionosphere</topic><topic>ionospheric layers</topic><topic>Ionospheric measurements</topic><topic>Latitude</topic><topic>Low altitude</topic><topic>Narrowband</topic><topic>Orbits</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Plasma</topic><topic>Plasma Physics</topic><topic>plasma scale height</topic><topic>Plasma waves</topic><topic>Radio waves</topic><topic>Saturn</topic><topic>Saturn ionosphere</topic><topic>Saturn rings</topic><topic>Saturn's ionosphere</topic><topic>Scale height</topic><topic>scale height density model</topic><topic>Space exploration</topic><topic>Spacecraft</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Persoon, A. M.</creatorcontrib><creatorcontrib>Kurth, W. S.</creatorcontrib><creatorcontrib>Gurnett, D. A.</creatorcontrib><creatorcontrib>Groene, J. B.</creatorcontrib><creatorcontrib>Sulaiman, A. H.</creatorcontrib><creatorcontrib>Wahlund, J.‐E.</creatorcontrib><creatorcontrib>Morooka, M. W.</creatorcontrib><creatorcontrib>Hadid, L. Z.</creatorcontrib><creatorcontrib>Nagy, A. F.</creatorcontrib><creatorcontrib>Waite, J. H.</creatorcontrib><creatorcontrib>Cravens, T. E.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Persoon, A. M.</au><au>Kurth, W. S.</au><au>Gurnett, D. A.</au><au>Groene, J. B.</au><au>Sulaiman, A. H.</au><au>Wahlund, J.‐E.</au><au>Morooka, M. W.</au><au>Hadid, L. Z.</au><au>Nagy, A. F.</au><au>Waite, J. H.</au><au>Cravens, T. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Density Distributions in Saturn's Ionosphere</atitle><jtitle>Geophysical research letters</jtitle><date>2019-03-28</date><risdate>2019</risdate><volume>46</volume><issue>6</issue><spage>3061</spage><epage>3068</epage><pages>3061-3068</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Between 26 April and 15 September 2017, Cassini executed 23 highly inclined Grand Finale orbits through a new frontier for space exploration, the narrow region between Saturn and the D Ring, providing the first opportunity for obtaining in situ ionospheric measurements. During the Grand Finale orbits, the Radio and Plasma Wave Science instrument observed broadband whistler mode emissions and narrowband upper hybrid frequency emissions. Using known wave propagation characteristics of these two plasma wave modes, the electron density is derived over a broad range of ionospheric latitudes and altitudes. A two‐part exponential scale height model is fitted to the electron density measurements. The model yields a double‐layered ionosphere with plasma scale heights of 545/575 km for the northern/southern hemispheres below 4,500 km and plasma scale heights of 4,780/2,360 km for the northern/southern hemispheres above 4,500 km. The interpretation of these layers involves the interaction between the rings and the ionosphere.
Plain Language Summary
For the final 5 months of the Cassini mission in 2017, the spacecraft executed 23 orbits through a new frontier for space exploration, the narrow region between Saturn and the innermost of Saturn's main rings, the D Ring. For the first time in the history of space exploration, the Cassini instruments were able to take measurements inside Saturn's ionosphere. This paper provides the density distribution of Saturn's ionospheric electrons, derived from plasma waves detected by the Radio and Plasma Wave Science instrument. The electron density distributions with altitude and latitude show that the ionospheric electron densities peak at 10,000 particles per cubic centimeter at low altitudes in the equatorial region and drop below 100 particles per cubic centimeter at higher altitudes and latitudes. Two simple ionospheric scale height density models for the northern and southern hemispheres are presented.
Key Points
We present the first in situ measurements of the electron density in the low to middle latitudes of Saturn's ionosphere
The distribution of electron density measurements with altitude shows evidence of a two‐layered ionospheric electron density distribution up to an altitude of 15,000 km
We present a scale height electron density model for a double‐layered ionosphere for both the northern and southern hemispheres</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2018GL078020</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2403-0282</orcidid><orcidid>https://orcid.org/0000-0002-8587-0202</orcidid><orcidid>https://orcid.org/0000-0002-1978-1025</orcidid><orcidid>https://orcid.org/0000-0002-1252-4755</orcidid><orcidid>https://orcid.org/0000-0001-9958-0241</orcidid><orcidid>https://orcid.org/0000-0002-2107-5859</orcidid><orcidid>https://orcid.org/0000-0002-0971-5016</orcidid><orcidid>https://orcid.org/0000-0002-5471-6202</orcidid><orcidid>https://orcid.org/0000-0003-0912-8353</orcidid><orcidid>https://orcid.org/0000-0001-8161-2225</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2019-03, Vol.46 (6), p.3061-3068 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02640930v1 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Astrophysics Broadband Cassini mission Density Density distribution Earth and Planetary Astrophysics electron densities Electron density measurement Electrons Emissions Equatorial regions Exploration Height Hemispheres Instruments Ionosphere ionospheric layers Ionospheric measurements Latitude Low altitude Narrowband Orbits Particle physics Physics Plasma Plasma Physics plasma scale height Plasma waves Radio waves Saturn Saturn ionosphere Saturn rings Saturn's ionosphere Scale height scale height density model Space exploration Spacecraft Wave propagation |
title | Electron Density Distributions in Saturn's Ionosphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T14%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Density%20Distributions%20in%20Saturn's%20Ionosphere&rft.jtitle=Geophysical%20research%20letters&rft.au=Persoon,%20A.%20M.&rft.date=2019-03-28&rft.volume=46&rft.issue=6&rft.spage=3061&rft.epage=3068&rft.pages=3061-3068&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2018GL078020&rft_dat=%3Cproquest_hal_p%3E2207465528%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207465528&rft_id=info:pmid/&rfr_iscdi=true |