Electron Density Distributions in Saturn's Ionosphere

Between 26 April and 15 September 2017, Cassini executed 23 highly inclined Grand Finale orbits through a new frontier for space exploration, the narrow region between Saturn and the D Ring, providing the first opportunity for obtaining in situ ionospheric measurements. During the Grand Finale orbit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2019-03, Vol.46 (6), p.3061-3068
Hauptverfasser: Persoon, A. M., Kurth, W. S., Gurnett, D. A., Groene, J. B., Sulaiman, A. H., Wahlund, J.‐E., Morooka, M. W., Hadid, L. Z., Nagy, A. F., Waite, J. H., Cravens, T. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3068
container_issue 6
container_start_page 3061
container_title Geophysical research letters
container_volume 46
creator Persoon, A. M.
Kurth, W. S.
Gurnett, D. A.
Groene, J. B.
Sulaiman, A. H.
Wahlund, J.‐E.
Morooka, M. W.
Hadid, L. Z.
Nagy, A. F.
Waite, J. H.
Cravens, T. E.
description Between 26 April and 15 September 2017, Cassini executed 23 highly inclined Grand Finale orbits through a new frontier for space exploration, the narrow region between Saturn and the D Ring, providing the first opportunity for obtaining in situ ionospheric measurements. During the Grand Finale orbits, the Radio and Plasma Wave Science instrument observed broadband whistler mode emissions and narrowband upper hybrid frequency emissions. Using known wave propagation characteristics of these two plasma wave modes, the electron density is derived over a broad range of ionospheric latitudes and altitudes. A two‐part exponential scale height model is fitted to the electron density measurements. The model yields a double‐layered ionosphere with plasma scale heights of 545/575 km for the northern/southern hemispheres below 4,500 km and plasma scale heights of 4,780/2,360 km for the northern/southern hemispheres above 4,500 km. The interpretation of these layers involves the interaction between the rings and the ionosphere. Plain Language Summary For the final 5 months of the Cassini mission in 2017, the spacecraft executed 23 orbits through a new frontier for space exploration, the narrow region between Saturn and the innermost of Saturn's main rings, the D Ring. For the first time in the history of space exploration, the Cassini instruments were able to take measurements inside Saturn's ionosphere. This paper provides the density distribution of Saturn's ionospheric electrons, derived from plasma waves detected by the Radio and Plasma Wave Science instrument. The electron density distributions with altitude and latitude show that the ionospheric electron densities peak at 10,000 particles per cubic centimeter at low altitudes in the equatorial region and drop below 100 particles per cubic centimeter at higher altitudes and latitudes. Two simple ionospheric scale height density models for the northern and southern hemispheres are presented. Key Points We present the first in situ measurements of the electron density in the low to middle latitudes of Saturn's ionosphere The distribution of electron density measurements with altitude shows evidence of a two‐layered ionospheric electron density distribution up to an altitude of 15,000 km We present a scale height electron density model for a double‐layered ionosphere for both the northern and southern hemispheres
doi_str_mv 10.1029/2018GL078020
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02640930v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207465528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4449-65833e0e9ab403b899574d968c343487a4e171c437bdad5551661ede3e605ea3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqzR-w4EEEVyffybG0tRYWBO09ZHdTmrJuarJV-u_dsiKePM0wPLwML0LXGB4wEP1IAKtFAVIBgRM0wpqxXAHIUzQC0P1OpDhHFyltAYACxSPE542ruhjabOba5LtDNvOpi77cdz60KfNt9ma7fWxvU7YMbUi7jYvuEp2tbZPc1c8co9XTfDV9zouXxXI6KfKKMaZzwRWlDpy2JQNaKq25ZLUWqqKMMiUtc1jiilFZ1rbmnGMhsKsddQK4s3SM7obYjW3MLvp3Gw8mWG-eJ4U53oAIBprCJ-7tzWB3MXzsXerMNvRv998ZQkAywTlRvbofVBVDStGtf2MxmGOH5m-HPScD__KNO_xrzeK14FJoTb8BP3pvUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207465528</pqid></control><display><type>article</type><title>Electron Density Distributions in Saturn's Ionosphere</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Persoon, A. M. ; Kurth, W. S. ; Gurnett, D. A. ; Groene, J. B. ; Sulaiman, A. H. ; Wahlund, J.‐E. ; Morooka, M. W. ; Hadid, L. Z. ; Nagy, A. F. ; Waite, J. H. ; Cravens, T. E.</creator><creatorcontrib>Persoon, A. M. ; Kurth, W. S. ; Gurnett, D. A. ; Groene, J. B. ; Sulaiman, A. H. ; Wahlund, J.‐E. ; Morooka, M. W. ; Hadid, L. Z. ; Nagy, A. F. ; Waite, J. H. ; Cravens, T. E.</creatorcontrib><description>Between 26 April and 15 September 2017, Cassini executed 23 highly inclined Grand Finale orbits through a new frontier for space exploration, the narrow region between Saturn and the D Ring, providing the first opportunity for obtaining in situ ionospheric measurements. During the Grand Finale orbits, the Radio and Plasma Wave Science instrument observed broadband whistler mode emissions and narrowband upper hybrid frequency emissions. Using known wave propagation characteristics of these two plasma wave modes, the electron density is derived over a broad range of ionospheric latitudes and altitudes. A two‐part exponential scale height model is fitted to the electron density measurements. The model yields a double‐layered ionosphere with plasma scale heights of 545/575 km for the northern/southern hemispheres below 4,500 km and plasma scale heights of 4,780/2,360 km for the northern/southern hemispheres above 4,500 km. The interpretation of these layers involves the interaction between the rings and the ionosphere. Plain Language Summary For the final 5 months of the Cassini mission in 2017, the spacecraft executed 23 orbits through a new frontier for space exploration, the narrow region between Saturn and the innermost of Saturn's main rings, the D Ring. For the first time in the history of space exploration, the Cassini instruments were able to take measurements inside Saturn's ionosphere. This paper provides the density distribution of Saturn's ionospheric electrons, derived from plasma waves detected by the Radio and Plasma Wave Science instrument. The electron density distributions with altitude and latitude show that the ionospheric electron densities peak at 10,000 particles per cubic centimeter at low altitudes in the equatorial region and drop below 100 particles per cubic centimeter at higher altitudes and latitudes. Two simple ionospheric scale height density models for the northern and southern hemispheres are presented. Key Points We present the first in situ measurements of the electron density in the low to middle latitudes of Saturn's ionosphere The distribution of electron density measurements with altitude shows evidence of a two‐layered ionospheric electron density distribution up to an altitude of 15,000 km We present a scale height electron density model for a double‐layered ionosphere for both the northern and southern hemispheres</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2018GL078020</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Astrophysics ; Broadband ; Cassini mission ; Density ; Density distribution ; Earth and Planetary Astrophysics ; electron densities ; Electron density measurement ; Electrons ; Emissions ; Equatorial regions ; Exploration ; Height ; Hemispheres ; Instruments ; Ionosphere ; ionospheric layers ; Ionospheric measurements ; Latitude ; Low altitude ; Narrowband ; Orbits ; Particle physics ; Physics ; Plasma ; Plasma Physics ; plasma scale height ; Plasma waves ; Radio waves ; Saturn ; Saturn ionosphere ; Saturn rings ; Saturn's ionosphere ; Scale height ; scale height density model ; Space exploration ; Spacecraft ; Wave propagation</subject><ispartof>Geophysical research letters, 2019-03, Vol.46 (6), p.3061-3068</ispartof><rights>2019. The Authors.</rights><rights>2019. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4449-65833e0e9ab403b899574d968c343487a4e171c437bdad5551661ede3e605ea3</citedby><cites>FETCH-LOGICAL-c4449-65833e0e9ab403b899574d968c343487a4e171c437bdad5551661ede3e605ea3</cites><orcidid>0000-0003-2403-0282 ; 0000-0002-8587-0202 ; 0000-0002-1978-1025 ; 0000-0002-1252-4755 ; 0000-0001-9958-0241 ; 0000-0002-2107-5859 ; 0000-0002-0971-5016 ; 0000-0002-5471-6202 ; 0000-0003-0912-8353 ; 0000-0001-8161-2225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GL078020$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GL078020$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02640930$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Persoon, A. M.</creatorcontrib><creatorcontrib>Kurth, W. S.</creatorcontrib><creatorcontrib>Gurnett, D. A.</creatorcontrib><creatorcontrib>Groene, J. B.</creatorcontrib><creatorcontrib>Sulaiman, A. H.</creatorcontrib><creatorcontrib>Wahlund, J.‐E.</creatorcontrib><creatorcontrib>Morooka, M. W.</creatorcontrib><creatorcontrib>Hadid, L. Z.</creatorcontrib><creatorcontrib>Nagy, A. F.</creatorcontrib><creatorcontrib>Waite, J. H.</creatorcontrib><creatorcontrib>Cravens, T. E.</creatorcontrib><title>Electron Density Distributions in Saturn's Ionosphere</title><title>Geophysical research letters</title><description>Between 26 April and 15 September 2017, Cassini executed 23 highly inclined Grand Finale orbits through a new frontier for space exploration, the narrow region between Saturn and the D Ring, providing the first opportunity for obtaining in situ ionospheric measurements. During the Grand Finale orbits, the Radio and Plasma Wave Science instrument observed broadband whistler mode emissions and narrowband upper hybrid frequency emissions. Using known wave propagation characteristics of these two plasma wave modes, the electron density is derived over a broad range of ionospheric latitudes and altitudes. A two‐part exponential scale height model is fitted to the electron density measurements. The model yields a double‐layered ionosphere with plasma scale heights of 545/575 km for the northern/southern hemispheres below 4,500 km and plasma scale heights of 4,780/2,360 km for the northern/southern hemispheres above 4,500 km. The interpretation of these layers involves the interaction between the rings and the ionosphere. Plain Language Summary For the final 5 months of the Cassini mission in 2017, the spacecraft executed 23 orbits through a new frontier for space exploration, the narrow region between Saturn and the innermost of Saturn's main rings, the D Ring. For the first time in the history of space exploration, the Cassini instruments were able to take measurements inside Saturn's ionosphere. This paper provides the density distribution of Saturn's ionospheric electrons, derived from plasma waves detected by the Radio and Plasma Wave Science instrument. The electron density distributions with altitude and latitude show that the ionospheric electron densities peak at 10,000 particles per cubic centimeter at low altitudes in the equatorial region and drop below 100 particles per cubic centimeter at higher altitudes and latitudes. Two simple ionospheric scale height density models for the northern and southern hemispheres are presented. Key Points We present the first in situ measurements of the electron density in the low to middle latitudes of Saturn's ionosphere The distribution of electron density measurements with altitude shows evidence of a two‐layered ionospheric electron density distribution up to an altitude of 15,000 km We present a scale height electron density model for a double‐layered ionosphere for both the northern and southern hemispheres</description><subject>Astrophysics</subject><subject>Broadband</subject><subject>Cassini mission</subject><subject>Density</subject><subject>Density distribution</subject><subject>Earth and Planetary Astrophysics</subject><subject>electron densities</subject><subject>Electron density measurement</subject><subject>Electrons</subject><subject>Emissions</subject><subject>Equatorial regions</subject><subject>Exploration</subject><subject>Height</subject><subject>Hemispheres</subject><subject>Instruments</subject><subject>Ionosphere</subject><subject>ionospheric layers</subject><subject>Ionospheric measurements</subject><subject>Latitude</subject><subject>Low altitude</subject><subject>Narrowband</subject><subject>Orbits</subject><subject>Particle physics</subject><subject>Physics</subject><subject>Plasma</subject><subject>Plasma Physics</subject><subject>plasma scale height</subject><subject>Plasma waves</subject><subject>Radio waves</subject><subject>Saturn</subject><subject>Saturn ionosphere</subject><subject>Saturn rings</subject><subject>Saturn's ionosphere</subject><subject>Scale height</subject><subject>scale height density model</subject><subject>Space exploration</subject><subject>Spacecraft</subject><subject>Wave propagation</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp90E1LAzEQBuAgCtbqzR-w4EEEVyffybG0tRYWBO09ZHdTmrJuarJV-u_dsiKePM0wPLwML0LXGB4wEP1IAKtFAVIBgRM0wpqxXAHIUzQC0P1OpDhHFyltAYACxSPE542ruhjabOba5LtDNvOpi77cdz60KfNt9ma7fWxvU7YMbUi7jYvuEp2tbZPc1c8co9XTfDV9zouXxXI6KfKKMaZzwRWlDpy2JQNaKq25ZLUWqqKMMiUtc1jiilFZ1rbmnGMhsKsddQK4s3SM7obYjW3MLvp3Gw8mWG-eJ4U53oAIBprCJ-7tzWB3MXzsXerMNvRv998ZQkAywTlRvbofVBVDStGtf2MxmGOH5m-HPScD__KNO_xrzeK14FJoTb8BP3pvUQ</recordid><startdate>20190328</startdate><enddate>20190328</enddate><creator>Persoon, A. M.</creator><creator>Kurth, W. S.</creator><creator>Gurnett, D. A.</creator><creator>Groene, J. B.</creator><creator>Sulaiman, A. H.</creator><creator>Wahlund, J.‐E.</creator><creator>Morooka, M. W.</creator><creator>Hadid, L. Z.</creator><creator>Nagy, A. F.</creator><creator>Waite, J. H.</creator><creator>Cravens, T. E.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2403-0282</orcidid><orcidid>https://orcid.org/0000-0002-8587-0202</orcidid><orcidid>https://orcid.org/0000-0002-1978-1025</orcidid><orcidid>https://orcid.org/0000-0002-1252-4755</orcidid><orcidid>https://orcid.org/0000-0001-9958-0241</orcidid><orcidid>https://orcid.org/0000-0002-2107-5859</orcidid><orcidid>https://orcid.org/0000-0002-0971-5016</orcidid><orcidid>https://orcid.org/0000-0002-5471-6202</orcidid><orcidid>https://orcid.org/0000-0003-0912-8353</orcidid><orcidid>https://orcid.org/0000-0001-8161-2225</orcidid></search><sort><creationdate>20190328</creationdate><title>Electron Density Distributions in Saturn's Ionosphere</title><author>Persoon, A. M. ; Kurth, W. S. ; Gurnett, D. A. ; Groene, J. B. ; Sulaiman, A. H. ; Wahlund, J.‐E. ; Morooka, M. W. ; Hadid, L. Z. ; Nagy, A. F. ; Waite, J. H. ; Cravens, T. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4449-65833e0e9ab403b899574d968c343487a4e171c437bdad5551661ede3e605ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astrophysics</topic><topic>Broadband</topic><topic>Cassini mission</topic><topic>Density</topic><topic>Density distribution</topic><topic>Earth and Planetary Astrophysics</topic><topic>electron densities</topic><topic>Electron density measurement</topic><topic>Electrons</topic><topic>Emissions</topic><topic>Equatorial regions</topic><topic>Exploration</topic><topic>Height</topic><topic>Hemispheres</topic><topic>Instruments</topic><topic>Ionosphere</topic><topic>ionospheric layers</topic><topic>Ionospheric measurements</topic><topic>Latitude</topic><topic>Low altitude</topic><topic>Narrowband</topic><topic>Orbits</topic><topic>Particle physics</topic><topic>Physics</topic><topic>Plasma</topic><topic>Plasma Physics</topic><topic>plasma scale height</topic><topic>Plasma waves</topic><topic>Radio waves</topic><topic>Saturn</topic><topic>Saturn ionosphere</topic><topic>Saturn rings</topic><topic>Saturn's ionosphere</topic><topic>Scale height</topic><topic>scale height density model</topic><topic>Space exploration</topic><topic>Spacecraft</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Persoon, A. M.</creatorcontrib><creatorcontrib>Kurth, W. S.</creatorcontrib><creatorcontrib>Gurnett, D. A.</creatorcontrib><creatorcontrib>Groene, J. B.</creatorcontrib><creatorcontrib>Sulaiman, A. H.</creatorcontrib><creatorcontrib>Wahlund, J.‐E.</creatorcontrib><creatorcontrib>Morooka, M. W.</creatorcontrib><creatorcontrib>Hadid, L. Z.</creatorcontrib><creatorcontrib>Nagy, A. F.</creatorcontrib><creatorcontrib>Waite, J. H.</creatorcontrib><creatorcontrib>Cravens, T. E.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Persoon, A. M.</au><au>Kurth, W. S.</au><au>Gurnett, D. A.</au><au>Groene, J. B.</au><au>Sulaiman, A. H.</au><au>Wahlund, J.‐E.</au><au>Morooka, M. W.</au><au>Hadid, L. Z.</au><au>Nagy, A. F.</au><au>Waite, J. H.</au><au>Cravens, T. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Density Distributions in Saturn's Ionosphere</atitle><jtitle>Geophysical research letters</jtitle><date>2019-03-28</date><risdate>2019</risdate><volume>46</volume><issue>6</issue><spage>3061</spage><epage>3068</epage><pages>3061-3068</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Between 26 April and 15 September 2017, Cassini executed 23 highly inclined Grand Finale orbits through a new frontier for space exploration, the narrow region between Saturn and the D Ring, providing the first opportunity for obtaining in situ ionospheric measurements. During the Grand Finale orbits, the Radio and Plasma Wave Science instrument observed broadband whistler mode emissions and narrowband upper hybrid frequency emissions. Using known wave propagation characteristics of these two plasma wave modes, the electron density is derived over a broad range of ionospheric latitudes and altitudes. A two‐part exponential scale height model is fitted to the electron density measurements. The model yields a double‐layered ionosphere with plasma scale heights of 545/575 km for the northern/southern hemispheres below 4,500 km and plasma scale heights of 4,780/2,360 km for the northern/southern hemispheres above 4,500 km. The interpretation of these layers involves the interaction between the rings and the ionosphere. Plain Language Summary For the final 5 months of the Cassini mission in 2017, the spacecraft executed 23 orbits through a new frontier for space exploration, the narrow region between Saturn and the innermost of Saturn's main rings, the D Ring. For the first time in the history of space exploration, the Cassini instruments were able to take measurements inside Saturn's ionosphere. This paper provides the density distribution of Saturn's ionospheric electrons, derived from plasma waves detected by the Radio and Plasma Wave Science instrument. The electron density distributions with altitude and latitude show that the ionospheric electron densities peak at 10,000 particles per cubic centimeter at low altitudes in the equatorial region and drop below 100 particles per cubic centimeter at higher altitudes and latitudes. Two simple ionospheric scale height density models for the northern and southern hemispheres are presented. Key Points We present the first in situ measurements of the electron density in the low to middle latitudes of Saturn's ionosphere The distribution of electron density measurements with altitude shows evidence of a two‐layered ionospheric electron density distribution up to an altitude of 15,000 km We present a scale height electron density model for a double‐layered ionosphere for both the northern and southern hemispheres</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018GL078020</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2403-0282</orcidid><orcidid>https://orcid.org/0000-0002-8587-0202</orcidid><orcidid>https://orcid.org/0000-0002-1978-1025</orcidid><orcidid>https://orcid.org/0000-0002-1252-4755</orcidid><orcidid>https://orcid.org/0000-0001-9958-0241</orcidid><orcidid>https://orcid.org/0000-0002-2107-5859</orcidid><orcidid>https://orcid.org/0000-0002-0971-5016</orcidid><orcidid>https://orcid.org/0000-0002-5471-6202</orcidid><orcidid>https://orcid.org/0000-0003-0912-8353</orcidid><orcidid>https://orcid.org/0000-0001-8161-2225</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2019-03, Vol.46 (6), p.3061-3068
issn 0094-8276
1944-8007
language eng
recordid cdi_hal_primary_oai_HAL_hal_02640930v1
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Astrophysics
Broadband
Cassini mission
Density
Density distribution
Earth and Planetary Astrophysics
electron densities
Electron density measurement
Electrons
Emissions
Equatorial regions
Exploration
Height
Hemispheres
Instruments
Ionosphere
ionospheric layers
Ionospheric measurements
Latitude
Low altitude
Narrowband
Orbits
Particle physics
Physics
Plasma
Plasma Physics
plasma scale height
Plasma waves
Radio waves
Saturn
Saturn ionosphere
Saturn rings
Saturn's ionosphere
Scale height
scale height density model
Space exploration
Spacecraft
Wave propagation
title Electron Density Distributions in Saturn's Ionosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T14%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Density%20Distributions%20in%20Saturn's%20Ionosphere&rft.jtitle=Geophysical%20research%20letters&rft.au=Persoon,%20A.%20M.&rft.date=2019-03-28&rft.volume=46&rft.issue=6&rft.spage=3061&rft.epage=3068&rft.pages=3061-3068&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2018GL078020&rft_dat=%3Cproquest_hal_p%3E2207465528%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207465528&rft_id=info:pmid/&rfr_iscdi=true