Multiscale and Multivariate Evaluation of Water Fluxes and States over European River Basins
Accurately predicting regional-scale water fluxes and states remains a challenging task in contemporary hydrology. Coping with this grand challenge requires, among other things, a model that makes reliable predictions across scales, locations, and variables other than those used for parameter estima...
Gespeichert in:
Veröffentlicht in: | Journal of hydrometeorology 2016-01, Vol.17 (1), p.287-307 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 307 |
---|---|
container_issue | 1 |
container_start_page | 287 |
container_title | Journal of hydrometeorology |
container_volume | 17 |
creator | Rakovec, Oldrich Kumar, Rohini Mai, Juliane Cuntz, Matthias Thober, Stephan Zink, Matthias Attinger, Sabine Schäfer, David Schrön, Martin Samaniego, Luis |
description | Accurately predicting regional-scale water fluxes and states remains a challenging task in contemporary hydrology. Coping with this grand challenge requires, among other things, a model that makes reliable predictions across scales, locations, and variables other than those used for parameter estimation. In this study, the mesoscale hydrologic model (mHM) parameterized with the multiscale regionalization technique is comprehensively tested across 400 European river basins. The model fluxes and states, constrained using the observed streamflow, are evaluated against gridded evapotranspiration, soil moisture, and total water storage anomalies, as well as local-scale eddy covariance observations. This multiscale verification is carried out in a seamless manner at the native resolutions of available datasets, varying from 0.5 to 100 km. Results of cross-validation tests show that mHM is able to capture the streamflow dynamics adequately well across a wide range of climate and physiographical characteristics. The model yields generally better results (with lower spread of model statistics) in basins with higher rain gauge density. Model performance for other fluxes and states is strongly driven by the degree of seasonality that each variable exhibits, with the best match being observed for evapotranspiration, followed by total water storage anomaly, and the least for soil moisture. Results show that constraining the model against streamflow only may be necessary but not sufficient to warrant the model fidelity for other complementary variables. The study emphasizes the need to account for other complementary datasets besides streamflow during parameter estimation to improve model skill with respect to “hidden” variables. |
doi_str_mv | 10.1175/JHM-D-15-0054.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02639605v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24915569</jstor_id><sourcerecordid>24915569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-bb55968b93214145b412e40759304894d7a1aeba1140a3a5796c905e4859444a3</originalsourceid><addsrcrecordid>eNpdkc1Lw0AQxYMo-Hn2JAS86CG6k8xks0et1SoVwQ_0ICyTusWUmK27SdH_3o2VHjzNzOM3wxteFO2DOAGQdHozuk0uEqBECMITWIu2gFJKJCGsr3p62Yy2vZ8JIVBBsRW93nZ1W_kJ1ybm5i3-HRfsKm5NPFxw3XFb2Sa20_g5SC6-rLsv43_ZhzYoPraLIA87Z-eGm_i-6sdz9lXjd6ONKdfe7P3Vnejpcvg4GCXju6vrwdk4mSBSm5QlkcqLUmUpICCVCKlBIUllAguFb5KBTckAKDhjkiqfKEEGC1KIyNlOdLy8-861nrvqg923tlzp0dlY95pI80zlghYQ2KMlO3f2szO-1R_hfVPX3BjbeQ1SCSWBsAjo4T90ZjvXhE80qDSXSskCA3W6pCbOeu_MdOUAhO6T0SEZfaGBdJ-M7i0cLDdmvrVuhachEaJcZT-9MogG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1926799784</pqid></control><display><type>article</type><title>Multiscale and Multivariate Evaluation of Water Fluxes and States over European River Basins</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Rakovec, Oldrich ; Kumar, Rohini ; Mai, Juliane ; Cuntz, Matthias ; Thober, Stephan ; Zink, Matthias ; Attinger, Sabine ; Schäfer, David ; Schrön, Martin ; Samaniego, Luis</creator><creatorcontrib>Rakovec, Oldrich ; Kumar, Rohini ; Mai, Juliane ; Cuntz, Matthias ; Thober, Stephan ; Zink, Matthias ; Attinger, Sabine ; Schäfer, David ; Schrön, Martin ; Samaniego, Luis</creatorcontrib><description>Accurately predicting regional-scale water fluxes and states remains a challenging task in contemporary hydrology. Coping with this grand challenge requires, among other things, a model that makes reliable predictions across scales, locations, and variables other than those used for parameter estimation. In this study, the mesoscale hydrologic model (mHM) parameterized with the multiscale regionalization technique is comprehensively tested across 400 European river basins. The model fluxes and states, constrained using the observed streamflow, are evaluated against gridded evapotranspiration, soil moisture, and total water storage anomalies, as well as local-scale eddy covariance observations. This multiscale verification is carried out in a seamless manner at the native resolutions of available datasets, varying from 0.5 to 100 km. Results of cross-validation tests show that mHM is able to capture the streamflow dynamics adequately well across a wide range of climate and physiographical characteristics. The model yields generally better results (with lower spread of model statistics) in basins with higher rain gauge density. Model performance for other fluxes and states is strongly driven by the degree of seasonality that each variable exhibits, with the best match being observed for evapotranspiration, followed by total water storage anomaly, and the least for soil moisture. Results show that constraining the model against streamflow only may be necessary but not sufficient to warrant the model fidelity for other complementary variables. The study emphasizes the need to account for other complementary datasets besides streamflow during parameter estimation to improve model skill with respect to “hidden” variables.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-15-0054.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Anomalies ; Climate change ; Covariance ; Datasets ; Dynamics ; Eddy covariance ; Evaluation ; Evapotranspiration ; Fluxes ; Freshwater ; Hydrologic models ; Hydrology ; Life Sciences ; Marine ; Multiscale analysis ; Parameter estimation ; Predictions ; Rain gauges ; Remote sensing ; River basins ; Rivers ; Runoff ; Seasonal variations ; Seasonality ; Soil ; Soil moisture ; Soil water storage ; Soils ; Statistical methods ; Stream discharge ; Stream flow ; Studies ; Time series ; Water storage</subject><ispartof>Journal of hydrometeorology, 2016-01, Vol.17 (1), p.287-307</ispartof><rights>2016 American Meteorological Society</rights><rights>Copyright American Meteorological Society Jan 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-bb55968b93214145b412e40759304894d7a1aeba1140a3a5796c905e4859444a3</citedby><cites>FETCH-LOGICAL-c445t-bb55968b93214145b412e40759304894d7a1aeba1140a3a5796c905e4859444a3</cites><orcidid>0000-0002-5966-1829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24915569$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24915569$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,3668,4010,27900,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02639605$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rakovec, Oldrich</creatorcontrib><creatorcontrib>Kumar, Rohini</creatorcontrib><creatorcontrib>Mai, Juliane</creatorcontrib><creatorcontrib>Cuntz, Matthias</creatorcontrib><creatorcontrib>Thober, Stephan</creatorcontrib><creatorcontrib>Zink, Matthias</creatorcontrib><creatorcontrib>Attinger, Sabine</creatorcontrib><creatorcontrib>Schäfer, David</creatorcontrib><creatorcontrib>Schrön, Martin</creatorcontrib><creatorcontrib>Samaniego, Luis</creatorcontrib><title>Multiscale and Multivariate Evaluation of Water Fluxes and States over European River Basins</title><title>Journal of hydrometeorology</title><description>Accurately predicting regional-scale water fluxes and states remains a challenging task in contemporary hydrology. Coping with this grand challenge requires, among other things, a model that makes reliable predictions across scales, locations, and variables other than those used for parameter estimation. In this study, the mesoscale hydrologic model (mHM) parameterized with the multiscale regionalization technique is comprehensively tested across 400 European river basins. The model fluxes and states, constrained using the observed streamflow, are evaluated against gridded evapotranspiration, soil moisture, and total water storage anomalies, as well as local-scale eddy covariance observations. This multiscale verification is carried out in a seamless manner at the native resolutions of available datasets, varying from 0.5 to 100 km. Results of cross-validation tests show that mHM is able to capture the streamflow dynamics adequately well across a wide range of climate and physiographical characteristics. The model yields generally better results (with lower spread of model statistics) in basins with higher rain gauge density. Model performance for other fluxes and states is strongly driven by the degree of seasonality that each variable exhibits, with the best match being observed for evapotranspiration, followed by total water storage anomaly, and the least for soil moisture. Results show that constraining the model against streamflow only may be necessary but not sufficient to warrant the model fidelity for other complementary variables. The study emphasizes the need to account for other complementary datasets besides streamflow during parameter estimation to improve model skill with respect to “hidden” variables.</description><subject>Anomalies</subject><subject>Climate change</subject><subject>Covariance</subject><subject>Datasets</subject><subject>Dynamics</subject><subject>Eddy covariance</subject><subject>Evaluation</subject><subject>Evapotranspiration</subject><subject>Fluxes</subject><subject>Freshwater</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Life Sciences</subject><subject>Marine</subject><subject>Multiscale analysis</subject><subject>Parameter estimation</subject><subject>Predictions</subject><subject>Rain gauges</subject><subject>Remote sensing</subject><subject>River basins</subject><subject>Rivers</subject><subject>Runoff</subject><subject>Seasonal variations</subject><subject>Seasonality</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>Soil water storage</subject><subject>Soils</subject><subject>Statistical methods</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Studies</subject><subject>Time series</subject><subject>Water storage</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkc1Lw0AQxYMo-Hn2JAS86CG6k8xks0et1SoVwQ_0ICyTusWUmK27SdH_3o2VHjzNzOM3wxteFO2DOAGQdHozuk0uEqBECMITWIu2gFJKJCGsr3p62Yy2vZ8JIVBBsRW93nZ1W_kJ1ybm5i3-HRfsKm5NPFxw3XFb2Sa20_g5SC6-rLsv43_ZhzYoPraLIA87Z-eGm_i-6sdz9lXjd6ONKdfe7P3Vnejpcvg4GCXju6vrwdk4mSBSm5QlkcqLUmUpICCVCKlBIUllAguFb5KBTckAKDhjkiqfKEEGC1KIyNlOdLy8-861nrvqg923tlzp0dlY95pI80zlghYQ2KMlO3f2szO-1R_hfVPX3BjbeQ1SCSWBsAjo4T90ZjvXhE80qDSXSskCA3W6pCbOeu_MdOUAhO6T0SEZfaGBdJ-M7i0cLDdmvrVuhachEaJcZT-9MogG</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Rakovec, Oldrich</creator><creator>Kumar, Rohini</creator><creator>Mai, Juliane</creator><creator>Cuntz, Matthias</creator><creator>Thober, Stephan</creator><creator>Zink, Matthias</creator><creator>Attinger, Sabine</creator><creator>Schäfer, David</creator><creator>Schrön, Martin</creator><creator>Samaniego, Luis</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5966-1829</orcidid></search><sort><creationdate>20160101</creationdate><title>Multiscale and Multivariate Evaluation of Water Fluxes and States over European River Basins</title><author>Rakovec, Oldrich ; Kumar, Rohini ; Mai, Juliane ; Cuntz, Matthias ; Thober, Stephan ; Zink, Matthias ; Attinger, Sabine ; Schäfer, David ; Schrön, Martin ; Samaniego, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-bb55968b93214145b412e40759304894d7a1aeba1140a3a5796c905e4859444a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anomalies</topic><topic>Climate change</topic><topic>Covariance</topic><topic>Datasets</topic><topic>Dynamics</topic><topic>Eddy covariance</topic><topic>Evaluation</topic><topic>Evapotranspiration</topic><topic>Fluxes</topic><topic>Freshwater</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Life Sciences</topic><topic>Marine</topic><topic>Multiscale analysis</topic><topic>Parameter estimation</topic><topic>Predictions</topic><topic>Rain gauges</topic><topic>Remote sensing</topic><topic>River basins</topic><topic>Rivers</topic><topic>Runoff</topic><topic>Seasonal variations</topic><topic>Seasonality</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>Soil water storage</topic><topic>Soils</topic><topic>Statistical methods</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Studies</topic><topic>Time series</topic><topic>Water storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rakovec, Oldrich</creatorcontrib><creatorcontrib>Kumar, Rohini</creatorcontrib><creatorcontrib>Mai, Juliane</creatorcontrib><creatorcontrib>Cuntz, Matthias</creatorcontrib><creatorcontrib>Thober, Stephan</creatorcontrib><creatorcontrib>Zink, Matthias</creatorcontrib><creatorcontrib>Attinger, Sabine</creatorcontrib><creatorcontrib>Schäfer, David</creatorcontrib><creatorcontrib>Schrön, Martin</creatorcontrib><creatorcontrib>Samaniego, Luis</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rakovec, Oldrich</au><au>Kumar, Rohini</au><au>Mai, Juliane</au><au>Cuntz, Matthias</au><au>Thober, Stephan</au><au>Zink, Matthias</au><au>Attinger, Sabine</au><au>Schäfer, David</au><au>Schrön, Martin</au><au>Samaniego, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale and Multivariate Evaluation of Water Fluxes and States over European River Basins</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>17</volume><issue>1</issue><spage>287</spage><epage>307</epage><pages>287-307</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>Accurately predicting regional-scale water fluxes and states remains a challenging task in contemporary hydrology. Coping with this grand challenge requires, among other things, a model that makes reliable predictions across scales, locations, and variables other than those used for parameter estimation. In this study, the mesoscale hydrologic model (mHM) parameterized with the multiscale regionalization technique is comprehensively tested across 400 European river basins. The model fluxes and states, constrained using the observed streamflow, are evaluated against gridded evapotranspiration, soil moisture, and total water storage anomalies, as well as local-scale eddy covariance observations. This multiscale verification is carried out in a seamless manner at the native resolutions of available datasets, varying from 0.5 to 100 km. Results of cross-validation tests show that mHM is able to capture the streamflow dynamics adequately well across a wide range of climate and physiographical characteristics. The model yields generally better results (with lower spread of model statistics) in basins with higher rain gauge density. Model performance for other fluxes and states is strongly driven by the degree of seasonality that each variable exhibits, with the best match being observed for evapotranspiration, followed by total water storage anomaly, and the least for soil moisture. Results show that constraining the model against streamflow only may be necessary but not sufficient to warrant the model fidelity for other complementary variables. The study emphasizes the need to account for other complementary datasets besides streamflow during parameter estimation to improve model skill with respect to “hidden” variables.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JHM-D-15-0054.1</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-5966-1829</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-755X |
ispartof | Journal of hydrometeorology, 2016-01, Vol.17 (1), p.287-307 |
issn | 1525-755X 1525-7541 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02639605v1 |
source | Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Anomalies Climate change Covariance Datasets Dynamics Eddy covariance Evaluation Evapotranspiration Fluxes Freshwater Hydrologic models Hydrology Life Sciences Marine Multiscale analysis Parameter estimation Predictions Rain gauges Remote sensing River basins Rivers Runoff Seasonal variations Seasonality Soil Soil moisture Soil water storage Soils Statistical methods Stream discharge Stream flow Studies Time series Water storage |
title | Multiscale and Multivariate Evaluation of Water Fluxes and States over European River Basins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A45%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20and%20Multivariate%20Evaluation%20of%20Water%20Fluxes%20and%20States%20over%20European%20River%20Basins&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Rakovec,%20Oldrich&rft.date=2016-01-01&rft.volume=17&rft.issue=1&rft.spage=287&rft.epage=307&rft.pages=287-307&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-15-0054.1&rft_dat=%3Cjstor_hal_p%3E24915569%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1926799784&rft_id=info:pmid/&rft_jstor_id=24915569&rfr_iscdi=true |