Site‐directed mutagenesis of the P225, N230 and H272 residues of succinate dehydrogenase subunit B from Botrytis cinerea highlights different roles in enzyme activity and inhibitor binding

Carboxamide fungicides target succinate dehydrogenase (SDH). Recent field monitoring studies have identified Botrytis cinerea isolates resistant to one or several SDH inhibitors (SDHIs) with amino acid substitutions in the SDH B subunit. We confirmed, by site‐directed mutagenesis of the sdhB gene, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2014-07, Vol.16 (7), p.2253-2266
Hauptverfasser: Lalève, Anaïs, Gamet, Stéphanie, Walker, Anne‐Sophie, Debieu, Danièle, Toquin, Valérie, Fillinger, Sabine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2266
container_issue 7
container_start_page 2253
container_title Environmental microbiology
container_volume 16
creator Lalève, Anaïs
Gamet, Stéphanie
Walker, Anne‐Sophie
Debieu, Danièle
Toquin, Valérie
Fillinger, Sabine
description Carboxamide fungicides target succinate dehydrogenase (SDH). Recent field monitoring studies have identified Botrytis cinerea isolates resistant to one or several SDH inhibitors (SDHIs) with amino acid substitutions in the SDH B subunit. We confirmed, by site‐directed mutagenesis of the sdhB gene, that each of the mutations identified in field strains conferred resistance to boscalid in B. cinerea, and in some cases cross‐resistance to other SDHIs (fluopyram, carboxin). Enzyme inhibition studies showed that the studied modifications (SdhB_P225T/L/F, N230I, H272Y/R/L) affected the inhibition of SDH activity by SDHIs, directly contributing to resistance. Our results confirm the importance of H272, P225 and N230 for carboxamide binding. Modifications of P225 and N230 conferred resistance to the four carboxamides tested (boscalid, fluopyram, carboxin, bixafen). Modifications of H272 had differential effects on the susceptibility of SDH to SDHIs. SdhBᴴ²⁷²ᴸ, affected susceptibility to all SDHIs, SdhBᴴ²⁷²ᴿ conferred resistance to all SDHIs tested except fluopyram, and SdhBᴴ²⁷²Y conferred fluopyram hypersensitivity. Affinity‐binding studies with radiolabelled fluopyram revealed strong correlations among the affinity of SDHIs for SDH, SDH inhibition and in vivo growth inhibition in the wild type. The sdhBᴴ²⁷²Y mutation did not affect SDH and respiration activities, whereas all the other mutations affected respiration by decreasing SDH activity.
doi_str_mv 10.1111/1462-2920.12282
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02638457v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3358408541</sourcerecordid><originalsourceid>FETCH-LOGICAL-f4772-a806c8ecc832058955c711eb6028538cc64e5e94d5bd8ed4453c41d936aed6fa3</originalsourceid><addsrcrecordid>eNqNktFuFCEUhidGY2v12jslMSaauArMMMNctk3tNm6rSa1NvCEMnNmhzjAVmOp45SP4RD6MTyKzu66JV5IQ4PD9hwP8SfKQ4Jcktlcky-mMljQuKeX0VrK7jdzezgndSe55f4UxKdIC3012aEZIiXm-m_w8NwF-ff-hjQMVQKNuCHIJFrzxqK9RaAC9o5S9QGc0xUhajea0oMhFQA-wYvyglLEyANLQjNr1US89xHg1WBPQAapd36GDPrgxxLQRBgcSNWbZtLEHj7Sp6xizAbm-jVmNRWC_jR0gqYK5MWFcHW1sYyoTeocqY7Wxy_vJnVq2Hh5sxr3k4vXR-8P5bPH2-ORwfzGrs6KgM8lxrjgoxVOKGS8ZUwUhUOWYcpZypfIMGJSZZpXmoLOMpSojukxzCTqvZbqXPF_nbWQrrp3ppBtFL42Y7y_EFMM0T3nGihsS2Wdr9tr1n-MTBdEZr6BtpYV-8IIwRnLCKc7-A81ozmKRPKJP_kGv-sHZeOmJIiUreTpRjzbUUHWgt6X--fAIPN0A0ivZ1k5aZfxfjhcMp7iIHFtzX0wL43afYDH5TkzOEpPLxMp34uj0ZDWJutlaZ3yAr1uddJ9EHs3HxOXZsWDkzell8eFcfIz84zVfy17IpYu1XJxTTLJoVsYKlqe_AYi14ek</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541959838</pqid></control><display><type>article</type><title>Site‐directed mutagenesis of the P225, N230 and H272 residues of succinate dehydrogenase subunit B from Botrytis cinerea highlights different roles in enzyme activity and inhibitor binding</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Lalève, Anaïs ; Gamet, Stéphanie ; Walker, Anne‐Sophie ; Debieu, Danièle ; Toquin, Valérie ; Fillinger, Sabine</creator><creatorcontrib>Lalève, Anaïs ; Gamet, Stéphanie ; Walker, Anne‐Sophie ; Debieu, Danièle ; Toquin, Valérie ; Fillinger, Sabine</creatorcontrib><description>Carboxamide fungicides target succinate dehydrogenase (SDH). Recent field monitoring studies have identified Botrytis cinerea isolates resistant to one or several SDH inhibitors (SDHIs) with amino acid substitutions in the SDH B subunit. We confirmed, by site‐directed mutagenesis of the sdhB gene, that each of the mutations identified in field strains conferred resistance to boscalid in B. cinerea, and in some cases cross‐resistance to other SDHIs (fluopyram, carboxin). Enzyme inhibition studies showed that the studied modifications (SdhB_P225T/L/F, N230I, H272Y/R/L) affected the inhibition of SDH activity by SDHIs, directly contributing to resistance. Our results confirm the importance of H272, P225 and N230 for carboxamide binding. Modifications of P225 and N230 conferred resistance to the four carboxamides tested (boscalid, fluopyram, carboxin, bixafen). Modifications of H272 had differential effects on the susceptibility of SDH to SDHIs. SdhBᴴ²⁷²ᴸ, affected susceptibility to all SDHIs, SdhBᴴ²⁷²ᴿ conferred resistance to all SDHIs tested except fluopyram, and SdhBᴴ²⁷²Y conferred fluopyram hypersensitivity. Affinity‐binding studies with radiolabelled fluopyram revealed strong correlations among the affinity of SDHIs for SDH, SDH inhibition and in vivo growth inhibition in the wild type. The sdhBᴴ²⁷²Y mutation did not affect SDH and respiration activities, whereas all the other mutations affected respiration by decreasing SDH activity.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.12282</identifier><identifier>PMID: 24119086</identifier><language>eng</language><publisher>Oxford: Blackwell Science</publisher><subject>Amino Acid Substitution ; Animal, plant and microbial ecology ; Benzamides ; Biological and medical sciences ; Biphenyl Compounds ; boscalid ; Botrytis - drug effects ; Botrytis - enzymology ; Botrytis - genetics ; Botrytis cinerea ; Carboxin ; Dehydrogenases ; Drug Resistance, Fungal - genetics ; enzyme activity ; enzyme inhibition ; Enzyme Inhibitors ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Fungicides, Industrial ; General aspects ; genes ; growth retardation ; hypersensitivity ; Life Sciences ; Microbial ecology ; Microbiology ; Miscellaneous ; monitoring ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutation ; Mycology ; Niacinamide - analogs &amp; derivatives ; Protein Binding ; Protein Subunits - chemistry ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Pyridines ; Structure-Activity Relationship ; succinate dehydrogenase ; Succinate Dehydrogenase - chemistry ; Succinate Dehydrogenase - genetics ; Succinate Dehydrogenase - metabolism</subject><ispartof>Environmental microbiology, 2014-07, Vol.16 (7), p.2253-2266</ispartof><rights>2013 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2013 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2014 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4683-0803 ; 0000-0002-1246-246X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.12282$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.12282$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28750307$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24119086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02638457$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lalève, Anaïs</creatorcontrib><creatorcontrib>Gamet, Stéphanie</creatorcontrib><creatorcontrib>Walker, Anne‐Sophie</creatorcontrib><creatorcontrib>Debieu, Danièle</creatorcontrib><creatorcontrib>Toquin, Valérie</creatorcontrib><creatorcontrib>Fillinger, Sabine</creatorcontrib><title>Site‐directed mutagenesis of the P225, N230 and H272 residues of succinate dehydrogenase subunit B from Botrytis cinerea highlights different roles in enzyme activity and inhibitor binding</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Carboxamide fungicides target succinate dehydrogenase (SDH). Recent field monitoring studies have identified Botrytis cinerea isolates resistant to one or several SDH inhibitors (SDHIs) with amino acid substitutions in the SDH B subunit. We confirmed, by site‐directed mutagenesis of the sdhB gene, that each of the mutations identified in field strains conferred resistance to boscalid in B. cinerea, and in some cases cross‐resistance to other SDHIs (fluopyram, carboxin). Enzyme inhibition studies showed that the studied modifications (SdhB_P225T/L/F, N230I, H272Y/R/L) affected the inhibition of SDH activity by SDHIs, directly contributing to resistance. Our results confirm the importance of H272, P225 and N230 for carboxamide binding. Modifications of P225 and N230 conferred resistance to the four carboxamides tested (boscalid, fluopyram, carboxin, bixafen). Modifications of H272 had differential effects on the susceptibility of SDH to SDHIs. SdhBᴴ²⁷²ᴸ, affected susceptibility to all SDHIs, SdhBᴴ²⁷²ᴿ conferred resistance to all SDHIs tested except fluopyram, and SdhBᴴ²⁷²Y conferred fluopyram hypersensitivity. Affinity‐binding studies with radiolabelled fluopyram revealed strong correlations among the affinity of SDHIs for SDH, SDH inhibition and in vivo growth inhibition in the wild type. The sdhBᴴ²⁷²Y mutation did not affect SDH and respiration activities, whereas all the other mutations affected respiration by decreasing SDH activity.</description><subject>Amino Acid Substitution</subject><subject>Animal, plant and microbial ecology</subject><subject>Benzamides</subject><subject>Biological and medical sciences</subject><subject>Biphenyl Compounds</subject><subject>boscalid</subject><subject>Botrytis - drug effects</subject><subject>Botrytis - enzymology</subject><subject>Botrytis - genetics</subject><subject>Botrytis cinerea</subject><subject>Carboxin</subject><subject>Dehydrogenases</subject><subject>Drug Resistance, Fungal - genetics</subject><subject>enzyme activity</subject><subject>enzyme inhibition</subject><subject>Enzyme Inhibitors</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungicides, Industrial</subject><subject>General aspects</subject><subject>genes</subject><subject>growth retardation</subject><subject>hypersensitivity</subject><subject>Life Sciences</subject><subject>Microbial ecology</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>monitoring</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Mycology</subject><subject>Niacinamide - analogs &amp; derivatives</subject><subject>Protein Binding</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Pyridines</subject><subject>Structure-Activity Relationship</subject><subject>succinate dehydrogenase</subject><subject>Succinate Dehydrogenase - chemistry</subject><subject>Succinate Dehydrogenase - genetics</subject><subject>Succinate Dehydrogenase - metabolism</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNktFuFCEUhidGY2v12jslMSaauArMMMNctk3tNm6rSa1NvCEMnNmhzjAVmOp45SP4RD6MTyKzu66JV5IQ4PD9hwP8SfKQ4Jcktlcky-mMljQuKeX0VrK7jdzezgndSe55f4UxKdIC3012aEZIiXm-m_w8NwF-ff-hjQMVQKNuCHIJFrzxqK9RaAC9o5S9QGc0xUhajea0oMhFQA-wYvyglLEyANLQjNr1US89xHg1WBPQAapd36GDPrgxxLQRBgcSNWbZtLEHj7Sp6xizAbm-jVmNRWC_jR0gqYK5MWFcHW1sYyoTeocqY7Wxy_vJnVq2Hh5sxr3k4vXR-8P5bPH2-ORwfzGrs6KgM8lxrjgoxVOKGS8ZUwUhUOWYcpZypfIMGJSZZpXmoLOMpSojukxzCTqvZbqXPF_nbWQrrp3ppBtFL42Y7y_EFMM0T3nGihsS2Wdr9tr1n-MTBdEZr6BtpYV-8IIwRnLCKc7-A81ozmKRPKJP_kGv-sHZeOmJIiUreTpRjzbUUHWgt6X--fAIPN0A0ivZ1k5aZfxfjhcMp7iIHFtzX0wL43afYDH5TkzOEpPLxMp34uj0ZDWJutlaZ3yAr1uddJ9EHs3HxOXZsWDkzell8eFcfIz84zVfy17IpYu1XJxTTLJoVsYKlqe_AYi14ek</recordid><startdate>201407</startdate><enddate>201407</enddate><creator>Lalève, Anaïs</creator><creator>Gamet, Stéphanie</creator><creator>Walker, Anne‐Sophie</creator><creator>Debieu, Danièle</creator><creator>Toquin, Valérie</creator><creator>Fillinger, Sabine</creator><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><general>Society for Applied Microbiology and Wiley-Blackwell</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4683-0803</orcidid><orcidid>https://orcid.org/0000-0002-1246-246X</orcidid></search><sort><creationdate>201407</creationdate><title>Site‐directed mutagenesis of the P225, N230 and H272 residues of succinate dehydrogenase subunit B from Botrytis cinerea highlights different roles in enzyme activity and inhibitor binding</title><author>Lalève, Anaïs ; Gamet, Stéphanie ; Walker, Anne‐Sophie ; Debieu, Danièle ; Toquin, Valérie ; Fillinger, Sabine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-f4772-a806c8ecc832058955c711eb6028538cc64e5e94d5bd8ed4453c41d936aed6fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acid Substitution</topic><topic>Animal, plant and microbial ecology</topic><topic>Benzamides</topic><topic>Biological and medical sciences</topic><topic>Biphenyl Compounds</topic><topic>boscalid</topic><topic>Botrytis - drug effects</topic><topic>Botrytis - enzymology</topic><topic>Botrytis - genetics</topic><topic>Botrytis cinerea</topic><topic>Carboxin</topic><topic>Dehydrogenases</topic><topic>Drug Resistance, Fungal - genetics</topic><topic>enzyme activity</topic><topic>enzyme inhibition</topic><topic>Enzyme Inhibitors</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungicides, Industrial</topic><topic>General aspects</topic><topic>genes</topic><topic>growth retardation</topic><topic>hypersensitivity</topic><topic>Life Sciences</topic><topic>Microbial ecology</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>monitoring</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Mycology</topic><topic>Niacinamide - analogs &amp; derivatives</topic><topic>Protein Binding</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Pyridines</topic><topic>Structure-Activity Relationship</topic><topic>succinate dehydrogenase</topic><topic>Succinate Dehydrogenase - chemistry</topic><topic>Succinate Dehydrogenase - genetics</topic><topic>Succinate Dehydrogenase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lalève, Anaïs</creatorcontrib><creatorcontrib>Gamet, Stéphanie</creatorcontrib><creatorcontrib>Walker, Anne‐Sophie</creatorcontrib><creatorcontrib>Debieu, Danièle</creatorcontrib><creatorcontrib>Toquin, Valérie</creatorcontrib><creatorcontrib>Fillinger, Sabine</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lalève, Anaïs</au><au>Gamet, Stéphanie</au><au>Walker, Anne‐Sophie</au><au>Debieu, Danièle</au><au>Toquin, Valérie</au><au>Fillinger, Sabine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site‐directed mutagenesis of the P225, N230 and H272 residues of succinate dehydrogenase subunit B from Botrytis cinerea highlights different roles in enzyme activity and inhibitor binding</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2014-07</date><risdate>2014</risdate><volume>16</volume><issue>7</issue><spage>2253</spage><epage>2266</epage><pages>2253-2266</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Carboxamide fungicides target succinate dehydrogenase (SDH). Recent field monitoring studies have identified Botrytis cinerea isolates resistant to one or several SDH inhibitors (SDHIs) with amino acid substitutions in the SDH B subunit. We confirmed, by site‐directed mutagenesis of the sdhB gene, that each of the mutations identified in field strains conferred resistance to boscalid in B. cinerea, and in some cases cross‐resistance to other SDHIs (fluopyram, carboxin). Enzyme inhibition studies showed that the studied modifications (SdhB_P225T/L/F, N230I, H272Y/R/L) affected the inhibition of SDH activity by SDHIs, directly contributing to resistance. Our results confirm the importance of H272, P225 and N230 for carboxamide binding. Modifications of P225 and N230 conferred resistance to the four carboxamides tested (boscalid, fluopyram, carboxin, bixafen). Modifications of H272 had differential effects on the susceptibility of SDH to SDHIs. SdhBᴴ²⁷²ᴸ, affected susceptibility to all SDHIs, SdhBᴴ²⁷²ᴿ conferred resistance to all SDHIs tested except fluopyram, and SdhBᴴ²⁷²Y conferred fluopyram hypersensitivity. Affinity‐binding studies with radiolabelled fluopyram revealed strong correlations among the affinity of SDHIs for SDH, SDH inhibition and in vivo growth inhibition in the wild type. The sdhBᴴ²⁷²Y mutation did not affect SDH and respiration activities, whereas all the other mutations affected respiration by decreasing SDH activity.</abstract><cop>Oxford</cop><pub>Blackwell Science</pub><pmid>24119086</pmid><doi>10.1111/1462-2920.12282</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4683-0803</orcidid><orcidid>https://orcid.org/0000-0002-1246-246X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2014-07, Vol.16 (7), p.2253-2266
issn 1462-2912
1462-2920
language eng
recordid cdi_hal_primary_oai_HAL_hal_02638457v1
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Amino Acid Substitution
Animal, plant and microbial ecology
Benzamides
Biological and medical sciences
Biphenyl Compounds
boscalid
Botrytis - drug effects
Botrytis - enzymology
Botrytis - genetics
Botrytis cinerea
Carboxin
Dehydrogenases
Drug Resistance, Fungal - genetics
enzyme activity
enzyme inhibition
Enzyme Inhibitors
Enzymes
Fundamental and applied biological sciences. Psychology
Fungal Proteins - chemistry
Fungal Proteins - genetics
Fungal Proteins - metabolism
Fungicides, Industrial
General aspects
genes
growth retardation
hypersensitivity
Life Sciences
Microbial ecology
Microbiology
Miscellaneous
monitoring
Mutagenesis
Mutagenesis, Site-Directed
Mutation
Mycology
Niacinamide - analogs & derivatives
Protein Binding
Protein Subunits - chemistry
Protein Subunits - genetics
Protein Subunits - metabolism
Pyridines
Structure-Activity Relationship
succinate dehydrogenase
Succinate Dehydrogenase - chemistry
Succinate Dehydrogenase - genetics
Succinate Dehydrogenase - metabolism
title Site‐directed mutagenesis of the P225, N230 and H272 residues of succinate dehydrogenase subunit B from Botrytis cinerea highlights different roles in enzyme activity and inhibitor binding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site%E2%80%90directed%20mutagenesis%20of%20the%20P225,%20N230%20and%20H272%20residues%20of%20succinate%20dehydrogenase%20subunit%20B%20from%20Botrytis%20cinerea%20highlights%20different%20roles%20in%20enzyme%20activity%20and%20inhibitor%20binding&rft.jtitle=Environmental%20microbiology&rft.au=Lal%C3%A8ve,%20Ana%C3%AFs&rft.date=2014-07&rft.volume=16&rft.issue=7&rft.spage=2253&rft.epage=2266&rft.pages=2253-2266&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.12282&rft_dat=%3Cproquest_hal_p%3E3358408541%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541959838&rft_id=info:pmid/24119086&rfr_iscdi=true