Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production

Hydrogen is a promising alternative as an energetic carrier and its production by dark fermentation from wastewater has been recently proposed, with special attention to crude glycerol as potential substrate. In this study, two different feeding strategies were evaluated for replacing the glucose su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2015-10, Vol.99 (19), p.8295-8308
Hauptverfasser: Tapia-Venegas, E, Cabrol, L, Brandhoff, B, Hamelin, J, Trably, E, Steyer, JP, Ruiz-Filippi, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8308
container_issue 19
container_start_page 8295
container_title Applied microbiology and biotechnology
container_volume 99
creator Tapia-Venegas, E
Cabrol, L
Brandhoff, B
Hamelin, J
Trably, E
Steyer, JP
Ruiz-Filippi, G
description Hydrogen is a promising alternative as an energetic carrier and its production by dark fermentation from wastewater has been recently proposed, with special attention to crude glycerol as potential substrate. In this study, two different feeding strategies were evaluated for replacing the glucose substrate by glycerol substrate: a one-step strategy (glucose was replaced abruptly by glycerol) and a step-by-step strategy (progressive decrease of glucose concentration and increase of glycerol concentration from 0 to 5 g L⁻¹), in a continuous stirred tank reactor (12 h of hydraulic retention time (HRT), pH 5.5, 35 °C). While the one-step strategy led to biomass washout and unsuccessful H₂ production, the step-by-step strategy was efficient for biomass adaptation, reaching acceptable hydrogen yields (0.4 ± 0.1 molH₂ mol⁻¹ gₗycₑᵣₒₗ cₒₙₛᵤₘₑd) around 33 % of the theoretical yield independently of the glycerol concentration. Microbial community structure was investigated by single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) fingerprinting techniques, targeting either the total community (16S ribosomal RNA (rRNA) gene) or the functional Clostridium population involved in H₂ production (hydA gene), as well as by 454 pyrosequencing of the total community. Multivariate analysis of fingerprinting and pyrosequencing results revealed the influence of the feeding strategy on the bacterial community structure and suggested the progressive structural adaptation of the community to increasing glycerol concentrations, through the emergence and selection of specific species, highly correlated to environmental parameters. Particularly, this work highlighted an interesting shift of dominant community members (putatively responsible of hydrogen production in the continuous stirred tank reactor (CSTR)) according to the gradient of glycerol proportion in the feed, from the family Veillonellaceae to the genera Prevotella and Clostridium sp., putatively responsible of hydrogen production in the CSTR.
doi_str_mv 10.1007/s00253-015-6832-6
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02637362v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A427857202</galeid><sourcerecordid>A427857202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c714t-fa02d9750615e984b2084a11a8f16dea3caec3b82d006f18dd0ed6ed2a7191053</originalsourceid><addsrcrecordid>eNqNksFu1DAQhiMEoqXwAFwgEhd6SJlxEts5riqglVZCovRsvPYkdZWNFztB7NvjkFJYhBDywdbM949mxn-WPUc4QwDxJgKwuiwA64LLkhX8QXaMVXoAx-phdgwo6kLUjTzKnsR4C4BMcv44O2Kc1ZWQ9XH2eWX1btSj80Pu21wbZ31HgzN57CfbUT763A0mkI5u6PKu3xsKvs-NHwwNY_ihjHnrQ75x_mZvwyzPd8Hbycy5p9mjVveRnt3dJ9n1u7efzi-K9Yf3l-erdWEEVmPRamC2EXXqvKZGVhsGstKIWrbILenSaDLlRjILwFuU1gJZTpZpgQ1CXZ5kp0vdG92rXXBbHfbKa6cuVms1x4DxUpScfcXEvl7Y1OaXieKoti4a6ns9kJ-iQsEYCilF9R8opj9IOEvoqz_QWz-FIQ2dKGjqphKAv6hO96Tc0Pq0RDMXVauKpT8RDOZaZ3-h0rG0dWn31LoUPxCcHggSM9K3sdNTjOry6uMhiwtrgo8xUHu_LwQ1G0stxlLJWGo2luJJ8-JuuGmzJXuv-OmkBLAFiCk1dBR-m_4fVV8uolZ7pbvgorq-YoAcAEpE3pTfAWDg3ho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709594701</pqid></control><display><type>article</type><title>Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Tapia-Venegas, E ; Cabrol, L ; Brandhoff, B ; Hamelin, J ; Trably, E ; Steyer, JP ; Ruiz-Filippi, G</creator><creatorcontrib>Tapia-Venegas, E ; Cabrol, L ; Brandhoff, B ; Hamelin, J ; Trably, E ; Steyer, JP ; Ruiz-Filippi, G</creatorcontrib><description>Hydrogen is a promising alternative as an energetic carrier and its production by dark fermentation from wastewater has been recently proposed, with special attention to crude glycerol as potential substrate. In this study, two different feeding strategies were evaluated for replacing the glucose substrate by glycerol substrate: a one-step strategy (glucose was replaced abruptly by glycerol) and a step-by-step strategy (progressive decrease of glucose concentration and increase of glycerol concentration from 0 to 5 g L⁻¹), in a continuous stirred tank reactor (12 h of hydraulic retention time (HRT), pH 5.5, 35 °C). While the one-step strategy led to biomass washout and unsuccessful H₂ production, the step-by-step strategy was efficient for biomass adaptation, reaching acceptable hydrogen yields (0.4 ± 0.1 molH₂ mol⁻¹ gₗycₑᵣₒₗ cₒₙₛᵤₘₑd) around 33 % of the theoretical yield independently of the glycerol concentration. Microbial community structure was investigated by single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) fingerprinting techniques, targeting either the total community (16S ribosomal RNA (rRNA) gene) or the functional Clostridium population involved in H₂ production (hydA gene), as well as by 454 pyrosequencing of the total community. Multivariate analysis of fingerprinting and pyrosequencing results revealed the influence of the feeding strategy on the bacterial community structure and suggested the progressive structural adaptation of the community to increasing glycerol concentrations, through the emergence and selection of specific species, highly correlated to environmental parameters. Particularly, this work highlighted an interesting shift of dominant community members (putatively responsible of hydrogen production in the continuous stirred tank reactor (CSTR)) according to the gradient of glycerol proportion in the feed, from the family Veillonellaceae to the genera Prevotella and Clostridium sp., putatively responsible of hydrogen production in the CSTR.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-015-6832-6</identifier><identifier>PMID: 26254785</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acids - metabolism ; Adaptation ; Alternative energy sources ; Analysis ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation &amp; purification ; Bacteria - metabolism ; bacterial communities ; Biodiesel fuels ; Bioenergy and Biofuels ; Biogas ; Biohydrogen ; Biomass ; Biomedical and Life Sciences ; Bioreactors - microbiology ; Biotechnology ; Clostridium ; Community structure ; denaturing gradient gel electrophoresis ; environmental factors ; Environmental Sciences ; feeding methods ; Fermentation ; Genes ; Genetic vectors ; Glucose ; Glycerol ; Glycerol - analysis ; Glycerol - metabolism ; Hydraulics ; Hydrogen ; Hydrogen - metabolism ; Hydrogen production ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Molecular Sequence Data ; Multivariate analysis ; Phylogeny ; Polymorphism ; Prevotella ; Reactors ; Retention ; Retention time ; ribosomal RNA ; sequence analysis ; Sewage - chemistry ; Sewage - microbiology ; single-stranded conformational polymorphism ; Sludge ; Studies ; wastewater ; yields</subject><ispartof>Applied microbiology and biotechnology, 2015-10, Vol.99 (19), p.8295-8308</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c714t-fa02d9750615e984b2084a11a8f16dea3caec3b82d006f18dd0ed6ed2a7191053</citedby><cites>FETCH-LOGICAL-c714t-fa02d9750615e984b2084a11a8f16dea3caec3b82d006f18dd0ed6ed2a7191053</cites><orcidid>0000-0003-3601-6349 ; 0000-0003-0417-2021 ; 0000-0003-0467-8081 ; 0000-0002-7041-2962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-015-6832-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-015-6832-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26254785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02637362$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tapia-Venegas, E</creatorcontrib><creatorcontrib>Cabrol, L</creatorcontrib><creatorcontrib>Brandhoff, B</creatorcontrib><creatorcontrib>Hamelin, J</creatorcontrib><creatorcontrib>Trably, E</creatorcontrib><creatorcontrib>Steyer, JP</creatorcontrib><creatorcontrib>Ruiz-Filippi, G</creatorcontrib><title>Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Hydrogen is a promising alternative as an energetic carrier and its production by dark fermentation from wastewater has been recently proposed, with special attention to crude glycerol as potential substrate. In this study, two different feeding strategies were evaluated for replacing the glucose substrate by glycerol substrate: a one-step strategy (glucose was replaced abruptly by glycerol) and a step-by-step strategy (progressive decrease of glucose concentration and increase of glycerol concentration from 0 to 5 g L⁻¹), in a continuous stirred tank reactor (12 h of hydraulic retention time (HRT), pH 5.5, 35 °C). While the one-step strategy led to biomass washout and unsuccessful H₂ production, the step-by-step strategy was efficient for biomass adaptation, reaching acceptable hydrogen yields (0.4 ± 0.1 molH₂ mol⁻¹ gₗycₑᵣₒₗ cₒₙₛᵤₘₑd) around 33 % of the theoretical yield independently of the glycerol concentration. Microbial community structure was investigated by single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) fingerprinting techniques, targeting either the total community (16S ribosomal RNA (rRNA) gene) or the functional Clostridium population involved in H₂ production (hydA gene), as well as by 454 pyrosequencing of the total community. Multivariate analysis of fingerprinting and pyrosequencing results revealed the influence of the feeding strategy on the bacterial community structure and suggested the progressive structural adaptation of the community to increasing glycerol concentrations, through the emergence and selection of specific species, highly correlated to environmental parameters. Particularly, this work highlighted an interesting shift of dominant community members (putatively responsible of hydrogen production in the continuous stirred tank reactor (CSTR)) according to the gradient of glycerol proportion in the feed, from the family Veillonellaceae to the genera Prevotella and Clostridium sp., putatively responsible of hydrogen production in the CSTR.</description><subject>Acids - metabolism</subject><subject>Adaptation</subject><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation &amp; purification</subject><subject>Bacteria - metabolism</subject><subject>bacterial communities</subject><subject>Biodiesel fuels</subject><subject>Bioenergy and Biofuels</subject><subject>Biogas</subject><subject>Biohydrogen</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Clostridium</subject><subject>Community structure</subject><subject>denaturing gradient gel electrophoresis</subject><subject>environmental factors</subject><subject>Environmental Sciences</subject><subject>feeding methods</subject><subject>Fermentation</subject><subject>Genes</subject><subject>Genetic vectors</subject><subject>Glucose</subject><subject>Glycerol</subject><subject>Glycerol - analysis</subject><subject>Glycerol - metabolism</subject><subject>Hydraulics</subject><subject>Hydrogen</subject><subject>Hydrogen - metabolism</subject><subject>Hydrogen production</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Molecular Sequence Data</subject><subject>Multivariate analysis</subject><subject>Phylogeny</subject><subject>Polymorphism</subject><subject>Prevotella</subject><subject>Reactors</subject><subject>Retention</subject><subject>Retention time</subject><subject>ribosomal RNA</subject><subject>sequence analysis</subject><subject>Sewage - chemistry</subject><subject>Sewage - microbiology</subject><subject>single-stranded conformational polymorphism</subject><subject>Sludge</subject><subject>Studies</subject><subject>wastewater</subject><subject>yields</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNksFu1DAQhiMEoqXwAFwgEhd6SJlxEts5riqglVZCovRsvPYkdZWNFztB7NvjkFJYhBDywdbM949mxn-WPUc4QwDxJgKwuiwA64LLkhX8QXaMVXoAx-phdgwo6kLUjTzKnsR4C4BMcv44O2Kc1ZWQ9XH2eWX1btSj80Pu21wbZ31HgzN57CfbUT763A0mkI5u6PKu3xsKvs-NHwwNY_ihjHnrQ75x_mZvwyzPd8Hbycy5p9mjVveRnt3dJ9n1u7efzi-K9Yf3l-erdWEEVmPRamC2EXXqvKZGVhsGstKIWrbILenSaDLlRjILwFuU1gJZTpZpgQ1CXZ5kp0vdG92rXXBbHfbKa6cuVms1x4DxUpScfcXEvl7Y1OaXieKoti4a6ns9kJ-iQsEYCilF9R8opj9IOEvoqz_QWz-FIQ2dKGjqphKAv6hO96Tc0Pq0RDMXVauKpT8RDOZaZ3-h0rG0dWn31LoUPxCcHggSM9K3sdNTjOry6uMhiwtrgo8xUHu_LwQ1G0stxlLJWGo2luJJ8-JuuGmzJXuv-OmkBLAFiCk1dBR-m_4fVV8uolZ7pbvgorq-YoAcAEpE3pTfAWDg3ho</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Tapia-Venegas, E</creator><creator>Cabrol, L</creator><creator>Brandhoff, B</creator><creator>Hamelin, J</creator><creator>Trably, E</creator><creator>Steyer, JP</creator><creator>Ruiz-Filippi, G</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QH</scope><scope>7QO</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3601-6349</orcidid><orcidid>https://orcid.org/0000-0003-0417-2021</orcidid><orcidid>https://orcid.org/0000-0003-0467-8081</orcidid><orcidid>https://orcid.org/0000-0002-7041-2962</orcidid></search><sort><creationdate>20151001</creationdate><title>Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production</title><author>Tapia-Venegas, E ; Cabrol, L ; Brandhoff, B ; Hamelin, J ; Trably, E ; Steyer, JP ; Ruiz-Filippi, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c714t-fa02d9750615e984b2084a11a8f16dea3caec3b82d006f18dd0ed6ed2a7191053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acids - metabolism</topic><topic>Adaptation</topic><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation &amp; purification</topic><topic>Bacteria - metabolism</topic><topic>bacterial communities</topic><topic>Biodiesel fuels</topic><topic>Bioenergy and Biofuels</topic><topic>Biogas</topic><topic>Biohydrogen</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Clostridium</topic><topic>Community structure</topic><topic>denaturing gradient gel electrophoresis</topic><topic>environmental factors</topic><topic>Environmental Sciences</topic><topic>feeding methods</topic><topic>Fermentation</topic><topic>Genes</topic><topic>Genetic vectors</topic><topic>Glucose</topic><topic>Glycerol</topic><topic>Glycerol - analysis</topic><topic>Glycerol - metabolism</topic><topic>Hydraulics</topic><topic>Hydrogen</topic><topic>Hydrogen - metabolism</topic><topic>Hydrogen production</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Molecular Sequence Data</topic><topic>Multivariate analysis</topic><topic>Phylogeny</topic><topic>Polymorphism</topic><topic>Prevotella</topic><topic>Reactors</topic><topic>Retention</topic><topic>Retention time</topic><topic>ribosomal RNA</topic><topic>sequence analysis</topic><topic>Sewage - chemistry</topic><topic>Sewage - microbiology</topic><topic>single-stranded conformational polymorphism</topic><topic>Sludge</topic><topic>Studies</topic><topic>wastewater</topic><topic>yields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tapia-Venegas, E</creatorcontrib><creatorcontrib>Cabrol, L</creatorcontrib><creatorcontrib>Brandhoff, B</creatorcontrib><creatorcontrib>Hamelin, J</creatorcontrib><creatorcontrib>Trably, E</creatorcontrib><creatorcontrib>Steyer, JP</creatorcontrib><creatorcontrib>Ruiz-Filippi, G</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tapia-Venegas, E</au><au>Cabrol, L</au><au>Brandhoff, B</au><au>Hamelin, J</au><au>Trably, E</au><au>Steyer, JP</au><au>Ruiz-Filippi, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>99</volume><issue>19</issue><spage>8295</spage><epage>8308</epage><pages>8295-8308</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Hydrogen is a promising alternative as an energetic carrier and its production by dark fermentation from wastewater has been recently proposed, with special attention to crude glycerol as potential substrate. In this study, two different feeding strategies were evaluated for replacing the glucose substrate by glycerol substrate: a one-step strategy (glucose was replaced abruptly by glycerol) and a step-by-step strategy (progressive decrease of glucose concentration and increase of glycerol concentration from 0 to 5 g L⁻¹), in a continuous stirred tank reactor (12 h of hydraulic retention time (HRT), pH 5.5, 35 °C). While the one-step strategy led to biomass washout and unsuccessful H₂ production, the step-by-step strategy was efficient for biomass adaptation, reaching acceptable hydrogen yields (0.4 ± 0.1 molH₂ mol⁻¹ gₗycₑᵣₒₗ cₒₙₛᵤₘₑd) around 33 % of the theoretical yield independently of the glycerol concentration. Microbial community structure was investigated by single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) fingerprinting techniques, targeting either the total community (16S ribosomal RNA (rRNA) gene) or the functional Clostridium population involved in H₂ production (hydA gene), as well as by 454 pyrosequencing of the total community. Multivariate analysis of fingerprinting and pyrosequencing results revealed the influence of the feeding strategy on the bacterial community structure and suggested the progressive structural adaptation of the community to increasing glycerol concentrations, through the emergence and selection of specific species, highly correlated to environmental parameters. Particularly, this work highlighted an interesting shift of dominant community members (putatively responsible of hydrogen production in the continuous stirred tank reactor (CSTR)) according to the gradient of glycerol proportion in the feed, from the family Veillonellaceae to the genera Prevotella and Clostridium sp., putatively responsible of hydrogen production in the CSTR.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26254785</pmid><doi>10.1007/s00253-015-6832-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3601-6349</orcidid><orcidid>https://orcid.org/0000-0003-0417-2021</orcidid><orcidid>https://orcid.org/0000-0003-0467-8081</orcidid><orcidid>https://orcid.org/0000-0002-7041-2962</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2015-10, Vol.99 (19), p.8295-8308
issn 0175-7598
1432-0614
language eng
recordid cdi_hal_primary_oai_HAL_hal_02637362v1
source MEDLINE; SpringerLink Journals
subjects Acids - metabolism
Adaptation
Alternative energy sources
Analysis
Bacteria
Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Bacteria - metabolism
bacterial communities
Biodiesel fuels
Bioenergy and Biofuels
Biogas
Biohydrogen
Biomass
Biomedical and Life Sciences
Bioreactors - microbiology
Biotechnology
Clostridium
Community structure
denaturing gradient gel electrophoresis
environmental factors
Environmental Sciences
feeding methods
Fermentation
Genes
Genetic vectors
Glucose
Glycerol
Glycerol - analysis
Glycerol - metabolism
Hydraulics
Hydrogen
Hydrogen - metabolism
Hydrogen production
Life Sciences
Microbial Genetics and Genomics
Microbiology
Microorganisms
Molecular Sequence Data
Multivariate analysis
Phylogeny
Polymorphism
Prevotella
Reactors
Retention
Retention time
ribosomal RNA
sequence analysis
Sewage - chemistry
Sewage - microbiology
single-stranded conformational polymorphism
Sludge
Studies
wastewater
yields
title Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20of%20acidogenic%20sludge%20to%20increasing%20glycerol%20concentrations%20for%20biohydrogen%20production&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Tapia-Venegas,%20E&rft.date=2015-10-01&rft.volume=99&rft.issue=19&rft.spage=8295&rft.epage=8308&rft.pages=8295-8308&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-015-6832-6&rft_dat=%3Cgale_hal_p%3EA427857202%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709594701&rft_id=info:pmid/26254785&rft_galeid=A427857202&rfr_iscdi=true