Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production
Hydrogen is a promising alternative as an energetic carrier and its production by dark fermentation from wastewater has been recently proposed, with special attention to crude glycerol as potential substrate. In this study, two different feeding strategies were evaluated for replacing the glucose su...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2015-10, Vol.99 (19), p.8295-8308 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8308 |
---|---|
container_issue | 19 |
container_start_page | 8295 |
container_title | Applied microbiology and biotechnology |
container_volume | 99 |
creator | Tapia-Venegas, E Cabrol, L Brandhoff, B Hamelin, J Trably, E Steyer, JP Ruiz-Filippi, G |
description | Hydrogen is a promising alternative as an energetic carrier and its production by dark fermentation from wastewater has been recently proposed, with special attention to crude glycerol as potential substrate. In this study, two different feeding strategies were evaluated for replacing the glucose substrate by glycerol substrate: a one-step strategy (glucose was replaced abruptly by glycerol) and a step-by-step strategy (progressive decrease of glucose concentration and increase of glycerol concentration from 0 to 5 g L⁻¹), in a continuous stirred tank reactor (12 h of hydraulic retention time (HRT), pH 5.5, 35 °C). While the one-step strategy led to biomass washout and unsuccessful H₂ production, the step-by-step strategy was efficient for biomass adaptation, reaching acceptable hydrogen yields (0.4 ± 0.1 molH₂ mol⁻¹ gₗycₑᵣₒₗ cₒₙₛᵤₘₑd) around 33 % of the theoretical yield independently of the glycerol concentration. Microbial community structure was investigated by single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) fingerprinting techniques, targeting either the total community (16S ribosomal RNA (rRNA) gene) or the functional Clostridium population involved in H₂ production (hydA gene), as well as by 454 pyrosequencing of the total community. Multivariate analysis of fingerprinting and pyrosequencing results revealed the influence of the feeding strategy on the bacterial community structure and suggested the progressive structural adaptation of the community to increasing glycerol concentrations, through the emergence and selection of specific species, highly correlated to environmental parameters. Particularly, this work highlighted an interesting shift of dominant community members (putatively responsible of hydrogen production in the continuous stirred tank reactor (CSTR)) according to the gradient of glycerol proportion in the feed, from the family Veillonellaceae to the genera Prevotella and Clostridium sp., putatively responsible of hydrogen production in the CSTR. |
doi_str_mv | 10.1007/s00253-015-6832-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02637362v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A427857202</galeid><sourcerecordid>A427857202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c714t-fa02d9750615e984b2084a11a8f16dea3caec3b82d006f18dd0ed6ed2a7191053</originalsourceid><addsrcrecordid>eNqNksFu1DAQhiMEoqXwAFwgEhd6SJlxEts5riqglVZCovRsvPYkdZWNFztB7NvjkFJYhBDywdbM949mxn-WPUc4QwDxJgKwuiwA64LLkhX8QXaMVXoAx-phdgwo6kLUjTzKnsR4C4BMcv44O2Kc1ZWQ9XH2eWX1btSj80Pu21wbZ31HgzN57CfbUT763A0mkI5u6PKu3xsKvs-NHwwNY_ihjHnrQ75x_mZvwyzPd8Hbycy5p9mjVveRnt3dJ9n1u7efzi-K9Yf3l-erdWEEVmPRamC2EXXqvKZGVhsGstKIWrbILenSaDLlRjILwFuU1gJZTpZpgQ1CXZ5kp0vdG92rXXBbHfbKa6cuVms1x4DxUpScfcXEvl7Y1OaXieKoti4a6ns9kJ-iQsEYCilF9R8opj9IOEvoqz_QWz-FIQ2dKGjqphKAv6hO96Tc0Pq0RDMXVauKpT8RDOZaZ3-h0rG0dWn31LoUPxCcHggSM9K3sdNTjOry6uMhiwtrgo8xUHu_LwQ1G0stxlLJWGo2luJJ8-JuuGmzJXuv-OmkBLAFiCk1dBR-m_4fVV8uolZ7pbvgorq-YoAcAEpE3pTfAWDg3ho</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709594701</pqid></control><display><type>article</type><title>Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Tapia-Venegas, E ; Cabrol, L ; Brandhoff, B ; Hamelin, J ; Trably, E ; Steyer, JP ; Ruiz-Filippi, G</creator><creatorcontrib>Tapia-Venegas, E ; Cabrol, L ; Brandhoff, B ; Hamelin, J ; Trably, E ; Steyer, JP ; Ruiz-Filippi, G</creatorcontrib><description>Hydrogen is a promising alternative as an energetic carrier and its production by dark fermentation from wastewater has been recently proposed, with special attention to crude glycerol as potential substrate. In this study, two different feeding strategies were evaluated for replacing the glucose substrate by glycerol substrate: a one-step strategy (glucose was replaced abruptly by glycerol) and a step-by-step strategy (progressive decrease of glucose concentration and increase of glycerol concentration from 0 to 5 g L⁻¹), in a continuous stirred tank reactor (12 h of hydraulic retention time (HRT), pH 5.5, 35 °C). While the one-step strategy led to biomass washout and unsuccessful H₂ production, the step-by-step strategy was efficient for biomass adaptation, reaching acceptable hydrogen yields (0.4 ± 0.1 molH₂ mol⁻¹ gₗycₑᵣₒₗ cₒₙₛᵤₘₑd) around 33 % of the theoretical yield independently of the glycerol concentration. Microbial community structure was investigated by single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) fingerprinting techniques, targeting either the total community (16S ribosomal RNA (rRNA) gene) or the functional Clostridium population involved in H₂ production (hydA gene), as well as by 454 pyrosequencing of the total community. Multivariate analysis of fingerprinting and pyrosequencing results revealed the influence of the feeding strategy on the bacterial community structure and suggested the progressive structural adaptation of the community to increasing glycerol concentrations, through the emergence and selection of specific species, highly correlated to environmental parameters. Particularly, this work highlighted an interesting shift of dominant community members (putatively responsible of hydrogen production in the continuous stirred tank reactor (CSTR)) according to the gradient of glycerol proportion in the feed, from the family Veillonellaceae to the genera Prevotella and Clostridium sp., putatively responsible of hydrogen production in the CSTR.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-015-6832-6</identifier><identifier>PMID: 26254785</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acids - metabolism ; Adaptation ; Alternative energy sources ; Analysis ; Bacteria ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation & purification ; Bacteria - metabolism ; bacterial communities ; Biodiesel fuels ; Bioenergy and Biofuels ; Biogas ; Biohydrogen ; Biomass ; Biomedical and Life Sciences ; Bioreactors - microbiology ; Biotechnology ; Clostridium ; Community structure ; denaturing gradient gel electrophoresis ; environmental factors ; Environmental Sciences ; feeding methods ; Fermentation ; Genes ; Genetic vectors ; Glucose ; Glycerol ; Glycerol - analysis ; Glycerol - metabolism ; Hydraulics ; Hydrogen ; Hydrogen - metabolism ; Hydrogen production ; Life Sciences ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Molecular Sequence Data ; Multivariate analysis ; Phylogeny ; Polymorphism ; Prevotella ; Reactors ; Retention ; Retention time ; ribosomal RNA ; sequence analysis ; Sewage - chemistry ; Sewage - microbiology ; single-stranded conformational polymorphism ; Sludge ; Studies ; wastewater ; yields</subject><ispartof>Applied microbiology and biotechnology, 2015-10, Vol.99 (19), p.8295-8308</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c714t-fa02d9750615e984b2084a11a8f16dea3caec3b82d006f18dd0ed6ed2a7191053</citedby><cites>FETCH-LOGICAL-c714t-fa02d9750615e984b2084a11a8f16dea3caec3b82d006f18dd0ed6ed2a7191053</cites><orcidid>0000-0003-3601-6349 ; 0000-0003-0417-2021 ; 0000-0003-0467-8081 ; 0000-0002-7041-2962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-015-6832-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-015-6832-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26254785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02637362$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tapia-Venegas, E</creatorcontrib><creatorcontrib>Cabrol, L</creatorcontrib><creatorcontrib>Brandhoff, B</creatorcontrib><creatorcontrib>Hamelin, J</creatorcontrib><creatorcontrib>Trably, E</creatorcontrib><creatorcontrib>Steyer, JP</creatorcontrib><creatorcontrib>Ruiz-Filippi, G</creatorcontrib><title>Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Hydrogen is a promising alternative as an energetic carrier and its production by dark fermentation from wastewater has been recently proposed, with special attention to crude glycerol as potential substrate. In this study, two different feeding strategies were evaluated for replacing the glucose substrate by glycerol substrate: a one-step strategy (glucose was replaced abruptly by glycerol) and a step-by-step strategy (progressive decrease of glucose concentration and increase of glycerol concentration from 0 to 5 g L⁻¹), in a continuous stirred tank reactor (12 h of hydraulic retention time (HRT), pH 5.5, 35 °C). While the one-step strategy led to biomass washout and unsuccessful H₂ production, the step-by-step strategy was efficient for biomass adaptation, reaching acceptable hydrogen yields (0.4 ± 0.1 molH₂ mol⁻¹ gₗycₑᵣₒₗ cₒₙₛᵤₘₑd) around 33 % of the theoretical yield independently of the glycerol concentration. Microbial community structure was investigated by single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) fingerprinting techniques, targeting either the total community (16S ribosomal RNA (rRNA) gene) or the functional Clostridium population involved in H₂ production (hydA gene), as well as by 454 pyrosequencing of the total community. Multivariate analysis of fingerprinting and pyrosequencing results revealed the influence of the feeding strategy on the bacterial community structure and suggested the progressive structural adaptation of the community to increasing glycerol concentrations, through the emergence and selection of specific species, highly correlated to environmental parameters. Particularly, this work highlighted an interesting shift of dominant community members (putatively responsible of hydrogen production in the continuous stirred tank reactor (CSTR)) according to the gradient of glycerol proportion in the feed, from the family Veillonellaceae to the genera Prevotella and Clostridium sp., putatively responsible of hydrogen production in the CSTR.</description><subject>Acids - metabolism</subject><subject>Adaptation</subject><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Bacteria</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Bacteria - metabolism</subject><subject>bacterial communities</subject><subject>Biodiesel fuels</subject><subject>Bioenergy and Biofuels</subject><subject>Biogas</subject><subject>Biohydrogen</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Clostridium</subject><subject>Community structure</subject><subject>denaturing gradient gel electrophoresis</subject><subject>environmental factors</subject><subject>Environmental Sciences</subject><subject>feeding methods</subject><subject>Fermentation</subject><subject>Genes</subject><subject>Genetic vectors</subject><subject>Glucose</subject><subject>Glycerol</subject><subject>Glycerol - analysis</subject><subject>Glycerol - metabolism</subject><subject>Hydraulics</subject><subject>Hydrogen</subject><subject>Hydrogen - metabolism</subject><subject>Hydrogen production</subject><subject>Life Sciences</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Molecular Sequence Data</subject><subject>Multivariate analysis</subject><subject>Phylogeny</subject><subject>Polymorphism</subject><subject>Prevotella</subject><subject>Reactors</subject><subject>Retention</subject><subject>Retention time</subject><subject>ribosomal RNA</subject><subject>sequence analysis</subject><subject>Sewage - chemistry</subject><subject>Sewage - microbiology</subject><subject>single-stranded conformational polymorphism</subject><subject>Sludge</subject><subject>Studies</subject><subject>wastewater</subject><subject>yields</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNksFu1DAQhiMEoqXwAFwgEhd6SJlxEts5riqglVZCovRsvPYkdZWNFztB7NvjkFJYhBDywdbM949mxn-WPUc4QwDxJgKwuiwA64LLkhX8QXaMVXoAx-phdgwo6kLUjTzKnsR4C4BMcv44O2Kc1ZWQ9XH2eWX1btSj80Pu21wbZ31HgzN57CfbUT763A0mkI5u6PKu3xsKvs-NHwwNY_ihjHnrQ75x_mZvwyzPd8Hbycy5p9mjVveRnt3dJ9n1u7efzi-K9Yf3l-erdWEEVmPRamC2EXXqvKZGVhsGstKIWrbILenSaDLlRjILwFuU1gJZTpZpgQ1CXZ5kp0vdG92rXXBbHfbKa6cuVms1x4DxUpScfcXEvl7Y1OaXieKoti4a6ns9kJ-iQsEYCilF9R8opj9IOEvoqz_QWz-FIQ2dKGjqphKAv6hO96Tc0Pq0RDMXVauKpT8RDOZaZ3-h0rG0dWn31LoUPxCcHggSM9K3sdNTjOry6uMhiwtrgo8xUHu_LwQ1G0stxlLJWGo2luJJ8-JuuGmzJXuv-OmkBLAFiCk1dBR-m_4fVV8uolZ7pbvgorq-YoAcAEpE3pTfAWDg3ho</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Tapia-Venegas, E</creator><creator>Cabrol, L</creator><creator>Brandhoff, B</creator><creator>Hamelin, J</creator><creator>Trably, E</creator><creator>Steyer, JP</creator><creator>Ruiz-Filippi, G</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QH</scope><scope>7QO</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3601-6349</orcidid><orcidid>https://orcid.org/0000-0003-0417-2021</orcidid><orcidid>https://orcid.org/0000-0003-0467-8081</orcidid><orcidid>https://orcid.org/0000-0002-7041-2962</orcidid></search><sort><creationdate>20151001</creationdate><title>Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production</title><author>Tapia-Venegas, E ; Cabrol, L ; Brandhoff, B ; Hamelin, J ; Trably, E ; Steyer, JP ; Ruiz-Filippi, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c714t-fa02d9750615e984b2084a11a8f16dea3caec3b82d006f18dd0ed6ed2a7191053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acids - metabolism</topic><topic>Adaptation</topic><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Bacteria</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Bacteria - metabolism</topic><topic>bacterial communities</topic><topic>Biodiesel fuels</topic><topic>Bioenergy and Biofuels</topic><topic>Biogas</topic><topic>Biohydrogen</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Clostridium</topic><topic>Community structure</topic><topic>denaturing gradient gel electrophoresis</topic><topic>environmental factors</topic><topic>Environmental Sciences</topic><topic>feeding methods</topic><topic>Fermentation</topic><topic>Genes</topic><topic>Genetic vectors</topic><topic>Glucose</topic><topic>Glycerol</topic><topic>Glycerol - analysis</topic><topic>Glycerol - metabolism</topic><topic>Hydraulics</topic><topic>Hydrogen</topic><topic>Hydrogen - metabolism</topic><topic>Hydrogen production</topic><topic>Life Sciences</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Molecular Sequence Data</topic><topic>Multivariate analysis</topic><topic>Phylogeny</topic><topic>Polymorphism</topic><topic>Prevotella</topic><topic>Reactors</topic><topic>Retention</topic><topic>Retention time</topic><topic>ribosomal RNA</topic><topic>sequence analysis</topic><topic>Sewage - chemistry</topic><topic>Sewage - microbiology</topic><topic>single-stranded conformational polymorphism</topic><topic>Sludge</topic><topic>Studies</topic><topic>wastewater</topic><topic>yields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tapia-Venegas, E</creatorcontrib><creatorcontrib>Cabrol, L</creatorcontrib><creatorcontrib>Brandhoff, B</creatorcontrib><creatorcontrib>Hamelin, J</creatorcontrib><creatorcontrib>Trably, E</creatorcontrib><creatorcontrib>Steyer, JP</creatorcontrib><creatorcontrib>Ruiz-Filippi, G</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tapia-Venegas, E</au><au>Cabrol, L</au><au>Brandhoff, B</au><au>Hamelin, J</au><au>Trably, E</au><au>Steyer, JP</au><au>Ruiz-Filippi, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>99</volume><issue>19</issue><spage>8295</spage><epage>8308</epage><pages>8295-8308</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Hydrogen is a promising alternative as an energetic carrier and its production by dark fermentation from wastewater has been recently proposed, with special attention to crude glycerol as potential substrate. In this study, two different feeding strategies were evaluated for replacing the glucose substrate by glycerol substrate: a one-step strategy (glucose was replaced abruptly by glycerol) and a step-by-step strategy (progressive decrease of glucose concentration and increase of glycerol concentration from 0 to 5 g L⁻¹), in a continuous stirred tank reactor (12 h of hydraulic retention time (HRT), pH 5.5, 35 °C). While the one-step strategy led to biomass washout and unsuccessful H₂ production, the step-by-step strategy was efficient for biomass adaptation, reaching acceptable hydrogen yields (0.4 ± 0.1 molH₂ mol⁻¹ gₗycₑᵣₒₗ cₒₙₛᵤₘₑd) around 33 % of the theoretical yield independently of the glycerol concentration. Microbial community structure was investigated by single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) fingerprinting techniques, targeting either the total community (16S ribosomal RNA (rRNA) gene) or the functional Clostridium population involved in H₂ production (hydA gene), as well as by 454 pyrosequencing of the total community. Multivariate analysis of fingerprinting and pyrosequencing results revealed the influence of the feeding strategy on the bacterial community structure and suggested the progressive structural adaptation of the community to increasing glycerol concentrations, through the emergence and selection of specific species, highly correlated to environmental parameters. Particularly, this work highlighted an interesting shift of dominant community members (putatively responsible of hydrogen production in the continuous stirred tank reactor (CSTR)) according to the gradient of glycerol proportion in the feed, from the family Veillonellaceae to the genera Prevotella and Clostridium sp., putatively responsible of hydrogen production in the CSTR.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26254785</pmid><doi>10.1007/s00253-015-6832-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3601-6349</orcidid><orcidid>https://orcid.org/0000-0003-0417-2021</orcidid><orcidid>https://orcid.org/0000-0003-0467-8081</orcidid><orcidid>https://orcid.org/0000-0002-7041-2962</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2015-10, Vol.99 (19), p.8295-8308 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02637362v1 |
source | MEDLINE; SpringerLink Journals |
subjects | Acids - metabolism Adaptation Alternative energy sources Analysis Bacteria Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Bacteria - metabolism bacterial communities Biodiesel fuels Bioenergy and Biofuels Biogas Biohydrogen Biomass Biomedical and Life Sciences Bioreactors - microbiology Biotechnology Clostridium Community structure denaturing gradient gel electrophoresis environmental factors Environmental Sciences feeding methods Fermentation Genes Genetic vectors Glucose Glycerol Glycerol - analysis Glycerol - metabolism Hydraulics Hydrogen Hydrogen - metabolism Hydrogen production Life Sciences Microbial Genetics and Genomics Microbiology Microorganisms Molecular Sequence Data Multivariate analysis Phylogeny Polymorphism Prevotella Reactors Retention Retention time ribosomal RNA sequence analysis Sewage - chemistry Sewage - microbiology single-stranded conformational polymorphism Sludge Studies wastewater yields |
title | Adaptation of acidogenic sludge to increasing glycerol concentrations for biohydrogen production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptation%20of%20acidogenic%20sludge%20to%20increasing%20glycerol%20concentrations%20for%20biohydrogen%20production&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Tapia-Venegas,%20E&rft.date=2015-10-01&rft.volume=99&rft.issue=19&rft.spage=8295&rft.epage=8308&rft.pages=8295-8308&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-015-6832-6&rft_dat=%3Cgale_hal_p%3EA427857202%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709594701&rft_id=info:pmid/26254785&rft_galeid=A427857202&rfr_iscdi=true |