Direct and maternal n-3 long-chain polyunsaturated fatty acid supplementation improved triglyceridemia and glycemia through the regulation of hepatic and muscle sphingolipid synthesis in offspring hamsters fed a high-fat diet

PURPOSE: We recently reported that direct and maternal supplementation with n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) alleviates the metabolic disturbances in adult hamster pups fed with a high-fat diet (HFD). In this study, we hypothesized that these results involved a perinatal modu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of nutrition 2016-03, Vol.55 (2), p.589-599
Hauptverfasser: Kasbi-Chadli, Fatima, Ferchaud-Roucher, Véronique, Krempf, Michel, Ouguerram, Khadija
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 599
container_issue 2
container_start_page 589
container_title European journal of nutrition
container_volume 55
creator Kasbi-Chadli, Fatima
Ferchaud-Roucher, Véronique
Krempf, Michel
Ouguerram, Khadija
description PURPOSE: We recently reported that direct and maternal supplementation with n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) alleviates the metabolic disturbances in adult hamster pups fed with a high-fat diet (HFD). In this study, we hypothesized that these results involved a perinatal modulating effect of sphingolipids by n-3 LC-PUFA. METHODS: We studied the effect of direct and maternal n-3 LC-PUFA supplementation on sphingolipid contents in liver and muscle, hepatic triglycerides (TG) secretion and glucose tolerance. Offspring male hamsters born from supplemented (Cω) or unsupplemented (C) mothers were subjected after weaning to a HFD during 16 weeks, without (Cω-HF or C-HF) or with direct supplementation with n-3 LC-PUFA (C-HFω). RESULTS: Direct supplementation decreased sphingosine, sphinganine and ceramides in liver and decreased sphingosine, sphinganine, sphingosine-1-phosphate (S1P) and ceramides in muscle in C-HFω compared to C-HF (p 
doi_str_mv 10.1007/s00394-015-0879-0
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02631523v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1768557041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-82033efca7092283baefbd22285826ee2bb02b36f6c5880a2de4e21a8a443db03</originalsourceid><addsrcrecordid>eNp9ks1u1TAQhSMEoqXwAGzAEhtYBMb2dZK7rMpPka7EArq2JskkceXEwXYq3cflTXCacoVYsPLY_s7MkX2y7CWH9xyg_BAA5H6XA1c5VOU-h0fZOd_JIi8EV49PNZRn2bMQbgFAyII_zc6EKquyqtR59uuj8dREhlPLRozkJ7RsyiWzburzZkAzsdnZ4zIFjItPRMs6jPHIsDEtC8s8WxppihiNm5gZZ-_uEhO96e2xIW9aGg3e978_WDdx8G7ph7QS89QvdhO7jg00p7rZ7CyhscTCPJipd9bM67zjlETBBGZWvguzT5dswDEk74F1aTSywfRDnlyy1lB8nj3p0AZ68bBeZDefP_24us4P3758vbo85I0CiHklQErqGixhL0Qla6SubkUqVSUKIlHXIGpZdEWjqgpQtLQjwbHC3U62NciL7N3Wd0Crk60R_VE7NPr68qDXMxCF5ErIO57YtxubXuvnQiHq0YSGrMWJ3BI0L4tKqRJ2K_rmH_TWLesvrVTJQSlersP5RjXeheCpOzngoNes6C0rOmVFr1nRq-bVQ-elHqk9Kf6EIwFiA7ZXJv_X6P90fb2JOnQae2-CvvkugBcpfYkolPwNi5LX3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1771055170</pqid></control><display><type>article</type><title>Direct and maternal n-3 long-chain polyunsaturated fatty acid supplementation improved triglyceridemia and glycemia through the regulation of hepatic and muscle sphingolipid synthesis in offspring hamsters fed a high-fat diet</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Kasbi-Chadli, Fatima ; Ferchaud-Roucher, Véronique ; Krempf, Michel ; Ouguerram, Khadija</creator><creatorcontrib>Kasbi-Chadli, Fatima ; Ferchaud-Roucher, Véronique ; Krempf, Michel ; Ouguerram, Khadija</creatorcontrib><description>PURPOSE: We recently reported that direct and maternal supplementation with n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) alleviates the metabolic disturbances in adult hamster pups fed with a high-fat diet (HFD). In this study, we hypothesized that these results involved a perinatal modulating effect of sphingolipids by n-3 LC-PUFA. METHODS: We studied the effect of direct and maternal n-3 LC-PUFA supplementation on sphingolipid contents in liver and muscle, hepatic triglycerides (TG) secretion and glucose tolerance. Offspring male hamsters born from supplemented (Cω) or unsupplemented (C) mothers were subjected after weaning to a HFD during 16 weeks, without (Cω-HF or C-HF) or with direct supplementation with n-3 LC-PUFA (C-HFω). RESULTS: Direct supplementation decreased sphingosine, sphinganine and ceramides in liver and decreased sphingosine, sphinganine, sphingosine-1-phosphate (S1P) and ceramides in muscle in C-HFω compared to C-HF (p &lt; 0.05). Maternal supplementation decreased C20 ceramide and lactosylceramide in liver and sphinganine, S1P and lactosylceramide in muscle (p &lt; 0.05). This supplementation tended to decrease glucosylceramide in liver (p &lt; 0.06) and muscle (p &lt; 0.07) in Cω-HF compared to C-HF. Direct supplementation increased glucose tolerance and decreased hepatic TG secretion and hepatic gene expression levels of diacylglycerol O-acyltransferase 2 (DGAT2), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase, stearoyl-CoA desaturase-1 (SCD1) and tumor necrosis factor α (TNFα). Maternal supplementation decreased basal glycemia and hepatic TG secretion. We observed a positive correlation between hepatic TG secretion and hepatic ceramide (p = 0.0059), and between basal glycemia and hepatic ceramide (p = 0.04) or muscle lactosylceramide contents (p = 0.001). CONCLUSION: We observed an improvement of lipids and glucose metabolism in hamster with n-3 LC-PUFA direct supplementation and a decrease in glycemia and hepatic TG secretion with maternal supplementation. These results are probably related to a decrease in both lipogenesis and sphingolipid contents in liver and muscle.</description><identifier>ISSN: 1436-6207</identifier><identifier>EISSN: 1436-6215</identifier><identifier>DOI: 10.1007/s00394-015-0879-0</identifier><identifier>PMID: 25787885</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adipose Tissue - drug effects ; Adipose Tissue - metabolism ; adults ; Animals ; Antigens, CD - blood ; blood glucose ; Blood Glucose - metabolism ; ceramides ; Ceramides - metabolism ; Chemistry ; Chemistry and Materials Science ; Cholesterol, HDL - blood ; Cholesterol, LDL - blood ; Cricetinae ; Diacylglycerol O-Acyltransferase - genetics ; Diacylglycerol O-Acyltransferase - metabolism ; diacylglycerols ; Diet, High-Fat ; Dietary Supplements ; Fatty Acid Synthases - genetics ; Fatty Acid Synthases - metabolism ; Fatty Acids, Omega-3 - pharmacology ; fatty-acid synthase ; Female ; Food engineering ; gene expression ; glucose ; glucose tolerance ; hamsters ; high fat diet ; Hypertriglyceridemia - diet therapy ; Lactosylceramides - blood ; Life Sciences ; lipogenesis ; Lipogenesis - drug effects ; liver ; Liver - drug effects ; Liver - metabolism ; long chain polyunsaturated fatty acids ; Lysophospholipids - metabolism ; Male ; males ; Maternal Nutritional Physiological Phenomena ; mothers ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; muscles ; Nutrition ; Original Contribution ; progeny ; pups ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; secretion ; Sphingolipids - blood ; sphingosine ; Sphingosine - analogs &amp; derivatives ; Sphingosine - metabolism ; stearoyl-CoA desaturase ; Stearoyl-CoA Desaturase - genetics ; Stearoyl-CoA Desaturase - metabolism ; Sterol Regulatory Element Binding Protein 1 - genetics ; Sterol Regulatory Element Binding Protein 1 - metabolism ; triacylglycerols ; Triglycerides - blood ; tumor necrosis factor-alpha ; Tumor Necrosis Factor-alpha - genetics ; Tumor Necrosis Factor-alpha - metabolism ; weaning</subject><ispartof>European journal of nutrition, 2016-03, Vol.55 (2), p.589-599</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-82033efca7092283baefbd22285826ee2bb02b36f6c5880a2de4e21a8a443db03</citedby><cites>FETCH-LOGICAL-c500t-82033efca7092283baefbd22285826ee2bb02b36f6c5880a2de4e21a8a443db03</cites><orcidid>0000-0003-0058-6462 ; 0000-0001-6809-1488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00394-015-0879-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00394-015-0879-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25787885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02631523$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasbi-Chadli, Fatima</creatorcontrib><creatorcontrib>Ferchaud-Roucher, Véronique</creatorcontrib><creatorcontrib>Krempf, Michel</creatorcontrib><creatorcontrib>Ouguerram, Khadija</creatorcontrib><title>Direct and maternal n-3 long-chain polyunsaturated fatty acid supplementation improved triglyceridemia and glycemia through the regulation of hepatic and muscle sphingolipid synthesis in offspring hamsters fed a high-fat diet</title><title>European journal of nutrition</title><addtitle>Eur J Nutr</addtitle><addtitle>Eur J Nutr</addtitle><description>PURPOSE: We recently reported that direct and maternal supplementation with n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) alleviates the metabolic disturbances in adult hamster pups fed with a high-fat diet (HFD). In this study, we hypothesized that these results involved a perinatal modulating effect of sphingolipids by n-3 LC-PUFA. METHODS: We studied the effect of direct and maternal n-3 LC-PUFA supplementation on sphingolipid contents in liver and muscle, hepatic triglycerides (TG) secretion and glucose tolerance. Offspring male hamsters born from supplemented (Cω) or unsupplemented (C) mothers were subjected after weaning to a HFD during 16 weeks, without (Cω-HF or C-HF) or with direct supplementation with n-3 LC-PUFA (C-HFω). RESULTS: Direct supplementation decreased sphingosine, sphinganine and ceramides in liver and decreased sphingosine, sphinganine, sphingosine-1-phosphate (S1P) and ceramides in muscle in C-HFω compared to C-HF (p &lt; 0.05). Maternal supplementation decreased C20 ceramide and lactosylceramide in liver and sphinganine, S1P and lactosylceramide in muscle (p &lt; 0.05). This supplementation tended to decrease glucosylceramide in liver (p &lt; 0.06) and muscle (p &lt; 0.07) in Cω-HF compared to C-HF. Direct supplementation increased glucose tolerance and decreased hepatic TG secretion and hepatic gene expression levels of diacylglycerol O-acyltransferase 2 (DGAT2), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase, stearoyl-CoA desaturase-1 (SCD1) and tumor necrosis factor α (TNFα). Maternal supplementation decreased basal glycemia and hepatic TG secretion. We observed a positive correlation between hepatic TG secretion and hepatic ceramide (p = 0.0059), and between basal glycemia and hepatic ceramide (p = 0.04) or muscle lactosylceramide contents (p = 0.001). CONCLUSION: We observed an improvement of lipids and glucose metabolism in hamster with n-3 LC-PUFA direct supplementation and a decrease in glycemia and hepatic TG secretion with maternal supplementation. These results are probably related to a decrease in both lipogenesis and sphingolipid contents in liver and muscle.</description><subject>Adipose Tissue - drug effects</subject><subject>Adipose Tissue - metabolism</subject><subject>adults</subject><subject>Animals</subject><subject>Antigens, CD - blood</subject><subject>blood glucose</subject><subject>Blood Glucose - metabolism</subject><subject>ceramides</subject><subject>Ceramides - metabolism</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cholesterol, HDL - blood</subject><subject>Cholesterol, LDL - blood</subject><subject>Cricetinae</subject><subject>Diacylglycerol O-Acyltransferase - genetics</subject><subject>Diacylglycerol O-Acyltransferase - metabolism</subject><subject>diacylglycerols</subject><subject>Diet, High-Fat</subject><subject>Dietary Supplements</subject><subject>Fatty Acid Synthases - genetics</subject><subject>Fatty Acid Synthases - metabolism</subject><subject>Fatty Acids, Omega-3 - pharmacology</subject><subject>fatty-acid synthase</subject><subject>Female</subject><subject>Food engineering</subject><subject>gene expression</subject><subject>glucose</subject><subject>glucose tolerance</subject><subject>hamsters</subject><subject>high fat diet</subject><subject>Hypertriglyceridemia - diet therapy</subject><subject>Lactosylceramides - blood</subject><subject>Life Sciences</subject><subject>lipogenesis</subject><subject>Lipogenesis - drug effects</subject><subject>liver</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>long chain polyunsaturated fatty acids</subject><subject>Lysophospholipids - metabolism</subject><subject>Male</subject><subject>males</subject><subject>Maternal Nutritional Physiological Phenomena</subject><subject>mothers</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>muscles</subject><subject>Nutrition</subject><subject>Original Contribution</subject><subject>progeny</subject><subject>pups</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>secretion</subject><subject>Sphingolipids - blood</subject><subject>sphingosine</subject><subject>Sphingosine - analogs &amp; derivatives</subject><subject>Sphingosine - metabolism</subject><subject>stearoyl-CoA desaturase</subject><subject>Stearoyl-CoA Desaturase - genetics</subject><subject>Stearoyl-CoA Desaturase - metabolism</subject><subject>Sterol Regulatory Element Binding Protein 1 - genetics</subject><subject>Sterol Regulatory Element Binding Protein 1 - metabolism</subject><subject>triacylglycerols</subject><subject>Triglycerides - blood</subject><subject>tumor necrosis factor-alpha</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>weaning</subject><issn>1436-6207</issn><issn>1436-6215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9ks1u1TAQhSMEoqXwAGzAEhtYBMb2dZK7rMpPka7EArq2JskkceXEwXYq3cflTXCacoVYsPLY_s7MkX2y7CWH9xyg_BAA5H6XA1c5VOU-h0fZOd_JIi8EV49PNZRn2bMQbgFAyII_zc6EKquyqtR59uuj8dREhlPLRozkJ7RsyiWzburzZkAzsdnZ4zIFjItPRMs6jPHIsDEtC8s8WxppihiNm5gZZ-_uEhO96e2xIW9aGg3e978_WDdx8G7ph7QS89QvdhO7jg00p7rZ7CyhscTCPJipd9bM67zjlETBBGZWvguzT5dswDEk74F1aTSywfRDnlyy1lB8nj3p0AZ68bBeZDefP_24us4P3758vbo85I0CiHklQErqGixhL0Qla6SubkUqVSUKIlHXIGpZdEWjqgpQtLQjwbHC3U62NciL7N3Wd0Crk60R_VE7NPr68qDXMxCF5ErIO57YtxubXuvnQiHq0YSGrMWJ3BI0L4tKqRJ2K_rmH_TWLesvrVTJQSlersP5RjXeheCpOzngoNes6C0rOmVFr1nRq-bVQ-elHqk9Kf6EIwFiA7ZXJv_X6P90fb2JOnQae2-CvvkugBcpfYkolPwNi5LX3g</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Kasbi-Chadli, Fatima</creator><creator>Ferchaud-Roucher, Véronique</creator><creator>Krempf, Michel</creator><creator>Ouguerram, Khadija</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RQ</scope><scope>7RV</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0058-6462</orcidid><orcidid>https://orcid.org/0000-0001-6809-1488</orcidid></search><sort><creationdate>20160301</creationdate><title>Direct and maternal n-3 long-chain polyunsaturated fatty acid supplementation improved triglyceridemia and glycemia through the regulation of hepatic and muscle sphingolipid synthesis in offspring hamsters fed a high-fat diet</title><author>Kasbi-Chadli, Fatima ; Ferchaud-Roucher, Véronique ; Krempf, Michel ; Ouguerram, Khadija</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-82033efca7092283baefbd22285826ee2bb02b36f6c5880a2de4e21a8a443db03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adipose Tissue - drug effects</topic><topic>Adipose Tissue - metabolism</topic><topic>adults</topic><topic>Animals</topic><topic>Antigens, CD - blood</topic><topic>blood glucose</topic><topic>Blood Glucose - metabolism</topic><topic>ceramides</topic><topic>Ceramides - metabolism</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cholesterol, HDL - blood</topic><topic>Cholesterol, LDL - blood</topic><topic>Cricetinae</topic><topic>Diacylglycerol O-Acyltransferase - genetics</topic><topic>Diacylglycerol O-Acyltransferase - metabolism</topic><topic>diacylglycerols</topic><topic>Diet, High-Fat</topic><topic>Dietary Supplements</topic><topic>Fatty Acid Synthases - genetics</topic><topic>Fatty Acid Synthases - metabolism</topic><topic>Fatty Acids, Omega-3 - pharmacology</topic><topic>fatty-acid synthase</topic><topic>Female</topic><topic>Food engineering</topic><topic>gene expression</topic><topic>glucose</topic><topic>glucose tolerance</topic><topic>hamsters</topic><topic>high fat diet</topic><topic>Hypertriglyceridemia - diet therapy</topic><topic>Lactosylceramides - blood</topic><topic>Life Sciences</topic><topic>lipogenesis</topic><topic>Lipogenesis - drug effects</topic><topic>liver</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>long chain polyunsaturated fatty acids</topic><topic>Lysophospholipids - metabolism</topic><topic>Male</topic><topic>males</topic><topic>Maternal Nutritional Physiological Phenomena</topic><topic>mothers</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>muscles</topic><topic>Nutrition</topic><topic>Original Contribution</topic><topic>progeny</topic><topic>pups</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>secretion</topic><topic>Sphingolipids - blood</topic><topic>sphingosine</topic><topic>Sphingosine - analogs &amp; derivatives</topic><topic>Sphingosine - metabolism</topic><topic>stearoyl-CoA desaturase</topic><topic>Stearoyl-CoA Desaturase - genetics</topic><topic>Stearoyl-CoA Desaturase - metabolism</topic><topic>Sterol Regulatory Element Binding Protein 1 - genetics</topic><topic>Sterol Regulatory Element Binding Protein 1 - metabolism</topic><topic>triacylglycerols</topic><topic>Triglycerides - blood</topic><topic>tumor necrosis factor-alpha</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>weaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasbi-Chadli, Fatima</creatorcontrib><creatorcontrib>Ferchaud-Roucher, Véronique</creatorcontrib><creatorcontrib>Krempf, Michel</creatorcontrib><creatorcontrib>Ouguerram, Khadija</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Career &amp; Technical Education Database</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasbi-Chadli, Fatima</au><au>Ferchaud-Roucher, Véronique</au><au>Krempf, Michel</au><au>Ouguerram, Khadija</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct and maternal n-3 long-chain polyunsaturated fatty acid supplementation improved triglyceridemia and glycemia through the regulation of hepatic and muscle sphingolipid synthesis in offspring hamsters fed a high-fat diet</atitle><jtitle>European journal of nutrition</jtitle><stitle>Eur J Nutr</stitle><addtitle>Eur J Nutr</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>55</volume><issue>2</issue><spage>589</spage><epage>599</epage><pages>589-599</pages><issn>1436-6207</issn><eissn>1436-6215</eissn><abstract>PURPOSE: We recently reported that direct and maternal supplementation with n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) alleviates the metabolic disturbances in adult hamster pups fed with a high-fat diet (HFD). In this study, we hypothesized that these results involved a perinatal modulating effect of sphingolipids by n-3 LC-PUFA. METHODS: We studied the effect of direct and maternal n-3 LC-PUFA supplementation on sphingolipid contents in liver and muscle, hepatic triglycerides (TG) secretion and glucose tolerance. Offspring male hamsters born from supplemented (Cω) or unsupplemented (C) mothers were subjected after weaning to a HFD during 16 weeks, without (Cω-HF or C-HF) or with direct supplementation with n-3 LC-PUFA (C-HFω). RESULTS: Direct supplementation decreased sphingosine, sphinganine and ceramides in liver and decreased sphingosine, sphinganine, sphingosine-1-phosphate (S1P) and ceramides in muscle in C-HFω compared to C-HF (p &lt; 0.05). Maternal supplementation decreased C20 ceramide and lactosylceramide in liver and sphinganine, S1P and lactosylceramide in muscle (p &lt; 0.05). This supplementation tended to decrease glucosylceramide in liver (p &lt; 0.06) and muscle (p &lt; 0.07) in Cω-HF compared to C-HF. Direct supplementation increased glucose tolerance and decreased hepatic TG secretion and hepatic gene expression levels of diacylglycerol O-acyltransferase 2 (DGAT2), sterol regulatory element-binding protein-1c (SREBP-1c), fatty acid synthase, stearoyl-CoA desaturase-1 (SCD1) and tumor necrosis factor α (TNFα). Maternal supplementation decreased basal glycemia and hepatic TG secretion. We observed a positive correlation between hepatic TG secretion and hepatic ceramide (p = 0.0059), and between basal glycemia and hepatic ceramide (p = 0.04) or muscle lactosylceramide contents (p = 0.001). CONCLUSION: We observed an improvement of lipids and glucose metabolism in hamster with n-3 LC-PUFA direct supplementation and a decrease in glycemia and hepatic TG secretion with maternal supplementation. These results are probably related to a decrease in both lipogenesis and sphingolipid contents in liver and muscle.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25787885</pmid><doi>10.1007/s00394-015-0879-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0058-6462</orcidid><orcidid>https://orcid.org/0000-0001-6809-1488</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1436-6207
ispartof European journal of nutrition, 2016-03, Vol.55 (2), p.589-599
issn 1436-6207
1436-6215
language eng
recordid cdi_hal_primary_oai_HAL_hal_02631523v1
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Adipose Tissue - drug effects
Adipose Tissue - metabolism
adults
Animals
Antigens, CD - blood
blood glucose
Blood Glucose - metabolism
ceramides
Ceramides - metabolism
Chemistry
Chemistry and Materials Science
Cholesterol, HDL - blood
Cholesterol, LDL - blood
Cricetinae
Diacylglycerol O-Acyltransferase - genetics
Diacylglycerol O-Acyltransferase - metabolism
diacylglycerols
Diet, High-Fat
Dietary Supplements
Fatty Acid Synthases - genetics
Fatty Acid Synthases - metabolism
Fatty Acids, Omega-3 - pharmacology
fatty-acid synthase
Female
Food engineering
gene expression
glucose
glucose tolerance
hamsters
high fat diet
Hypertriglyceridemia - diet therapy
Lactosylceramides - blood
Life Sciences
lipogenesis
Lipogenesis - drug effects
liver
Liver - drug effects
Liver - metabolism
long chain polyunsaturated fatty acids
Lysophospholipids - metabolism
Male
males
Maternal Nutritional Physiological Phenomena
mothers
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
muscles
Nutrition
Original Contribution
progeny
pups
RNA, Messenger - genetics
RNA, Messenger - metabolism
secretion
Sphingolipids - blood
sphingosine
Sphingosine - analogs & derivatives
Sphingosine - metabolism
stearoyl-CoA desaturase
Stearoyl-CoA Desaturase - genetics
Stearoyl-CoA Desaturase - metabolism
Sterol Regulatory Element Binding Protein 1 - genetics
Sterol Regulatory Element Binding Protein 1 - metabolism
triacylglycerols
Triglycerides - blood
tumor necrosis factor-alpha
Tumor Necrosis Factor-alpha - genetics
Tumor Necrosis Factor-alpha - metabolism
weaning
title Direct and maternal n-3 long-chain polyunsaturated fatty acid supplementation improved triglyceridemia and glycemia through the regulation of hepatic and muscle sphingolipid synthesis in offspring hamsters fed a high-fat diet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20and%20maternal%20n-3%20long-chain%20polyunsaturated%20fatty%20acid%20supplementation%20improved%20triglyceridemia%20and%20glycemia%20through%20the%20regulation%20of%20hepatic%20and%20muscle%20sphingolipid%20synthesis%20in%20offspring%20hamsters%20fed%20a%20high-fat%20diet&rft.jtitle=European%20journal%20of%20nutrition&rft.au=Kasbi-Chadli,%20Fatima&rft.date=2016-03-01&rft.volume=55&rft.issue=2&rft.spage=589&rft.epage=599&rft.pages=589-599&rft.issn=1436-6207&rft.eissn=1436-6215&rft_id=info:doi/10.1007/s00394-015-0879-0&rft_dat=%3Cproquest_hal_p%3E1768557041%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1771055170&rft_id=info:pmid/25787885&rfr_iscdi=true