Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides

This work introduces a newly developed reaction mechanism for the oxidation of ammonia in freely propagating and burner-stabilized premixed flames as well as shock-tube, jet-stirred reactor, and plug-flow reactor experiments. The paper mainly focuses on pure ammonia and ammonia–hydrogen fuel blends....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2018-10, Vol.32 (10), p.10202-10217
Hauptverfasser: Shrestha, Krishna P, Seidel, Lars, Zeuch, Thomas, Mauss, Fabian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10217
container_issue 10
container_start_page 10202
container_title Energy & fuels
container_volume 32
creator Shrestha, Krishna P
Seidel, Lars
Zeuch, Thomas
Mauss, Fabian
description This work introduces a newly developed reaction mechanism for the oxidation of ammonia in freely propagating and burner-stabilized premixed flames as well as shock-tube, jet-stirred reactor, and plug-flow reactor experiments. The paper mainly focuses on pure ammonia and ammonia–hydrogen fuel blends. The reaction mechanism also considers the formation of nitrogen oxides as well as the reduction of nitrogen oxides depending upon the conditions of the surrounding gas phase. Doping of the fuel blend with NO2 can result in acceleration of H2 autoignition via the reaction NO2 + HO2 ⇋ HONO + O2, followed by the thermal decomposition of HONO, or deceleration of H2 oxidation via NO2 + OH ⇋ NO + HO2. The concentration of HO2 is decisive for the active reaction pathway. The formation of NO in burner-stabilized premixed flames is shown to demonstrate the capability of the mechanism to be integrated into a mechanism for hydrocarbon oxidation.
doi_str_mv 10.1021/acs.energyfuels.8b01056
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02629067v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c247616639</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-78e25d0f24853055cc9b79c745ca8f78808fac76d184f6edde2ec30fea0c3223</originalsourceid><addsrcrecordid>eNqFkE1PAjEQQBujiYj-Bnv1sDjb3e6WI0ERIkpiuG9KO4WS3Za0i5F_L18ab54mmbw3yTxC7lPopcDSR6liDx2G5c5ssY49sYAUeHFBOilnkHBg_UvSASHKBAqWX5ObGNcAUGSCd8jmCVtpa9T01TpsraJvqFbS2dhQ4wNtV0hnX1bL1npHvaGDpvHOSjpxqt5q65ZHZORDc0Kk0_QD9Vb9CO-2DX6J7ngG4y25MrKOeHeeXTIfPc-H42Q6e5kMB9NE5hzapBTIuAbDcsEz4Fyp_qLsqzLnSgpTCgHCSFUWOhW5KVBrZKgyMChBZYxlXfJwOruSdbUJtpFhV3lpq_FgWh12wArWh6L8TPdseWJV8DEGNL9CCtWhcbVvXP1pXJ0b783sZB6Atd8Gt3_pX-sbg52Hng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides</title><source>American Chemical Society Journals</source><creator>Shrestha, Krishna P ; Seidel, Lars ; Zeuch, Thomas ; Mauss, Fabian</creator><creatorcontrib>Shrestha, Krishna P ; Seidel, Lars ; Zeuch, Thomas ; Mauss, Fabian</creatorcontrib><description>This work introduces a newly developed reaction mechanism for the oxidation of ammonia in freely propagating and burner-stabilized premixed flames as well as shock-tube, jet-stirred reactor, and plug-flow reactor experiments. The paper mainly focuses on pure ammonia and ammonia–hydrogen fuel blends. The reaction mechanism also considers the formation of nitrogen oxides as well as the reduction of nitrogen oxides depending upon the conditions of the surrounding gas phase. Doping of the fuel blend with NO2 can result in acceleration of H2 autoignition via the reaction NO2 + HO2 ⇋ HONO + O2, followed by the thermal decomposition of HONO, or deceleration of H2 oxidation via NO2 + OH ⇋ NO + HO2. The concentration of HO2 is decisive for the active reaction pathway. The formation of NO in burner-stabilized premixed flames is shown to demonstrate the capability of the mechanism to be integrated into a mechanism for hydrocarbon oxidation.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.8b01056</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical engineering ; Chemical Sciences ; or physical chemistry ; Theoretical and</subject><ispartof>Energy &amp; fuels, 2018-10, Vol.32 (10), p.10202-10217</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-78e25d0f24853055cc9b79c745ca8f78808fac76d184f6edde2ec30fea0c3223</citedby><cites>FETCH-LOGICAL-a450t-78e25d0f24853055cc9b79c745ca8f78808fac76d184f6edde2ec30fea0c3223</cites><orcidid>0000-0002-4794-0556 ; 0000-0001-5672-7354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.8b01056$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.8b01056$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02629067$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Shrestha, Krishna P</creatorcontrib><creatorcontrib>Seidel, Lars</creatorcontrib><creatorcontrib>Zeuch, Thomas</creatorcontrib><creatorcontrib>Mauss, Fabian</creatorcontrib><title>Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>This work introduces a newly developed reaction mechanism for the oxidation of ammonia in freely propagating and burner-stabilized premixed flames as well as shock-tube, jet-stirred reactor, and plug-flow reactor experiments. The paper mainly focuses on pure ammonia and ammonia–hydrogen fuel blends. The reaction mechanism also considers the formation of nitrogen oxides as well as the reduction of nitrogen oxides depending upon the conditions of the surrounding gas phase. Doping of the fuel blend with NO2 can result in acceleration of H2 autoignition via the reaction NO2 + HO2 ⇋ HONO + O2, followed by the thermal decomposition of HONO, or deceleration of H2 oxidation via NO2 + OH ⇋ NO + HO2. The concentration of HO2 is decisive for the active reaction pathway. The formation of NO in burner-stabilized premixed flames is shown to demonstrate the capability of the mechanism to be integrated into a mechanism for hydrocarbon oxidation.</description><subject>Chemical engineering</subject><subject>Chemical Sciences</subject><subject>or physical chemistry</subject><subject>Theoretical and</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQQBujiYj-Bnv1sDjb3e6WI0ERIkpiuG9KO4WS3Za0i5F_L18ab54mmbw3yTxC7lPopcDSR6liDx2G5c5ssY49sYAUeHFBOilnkHBg_UvSASHKBAqWX5ObGNcAUGSCd8jmCVtpa9T01TpsraJvqFbS2dhQ4wNtV0hnX1bL1npHvaGDpvHOSjpxqt5q65ZHZORDc0Kk0_QD9Vb9CO-2DX6J7ngG4y25MrKOeHeeXTIfPc-H42Q6e5kMB9NE5hzapBTIuAbDcsEz4Fyp_qLsqzLnSgpTCgHCSFUWOhW5KVBrZKgyMChBZYxlXfJwOruSdbUJtpFhV3lpq_FgWh12wArWh6L8TPdseWJV8DEGNL9CCtWhcbVvXP1pXJ0b783sZB6Atd8Gt3_pX-sbg52Hng</recordid><startdate>20181018</startdate><enddate>20181018</enddate><creator>Shrestha, Krishna P</creator><creator>Seidel, Lars</creator><creator>Zeuch, Thomas</creator><creator>Mauss, Fabian</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4794-0556</orcidid><orcidid>https://orcid.org/0000-0001-5672-7354</orcidid></search><sort><creationdate>20181018</creationdate><title>Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides</title><author>Shrestha, Krishna P ; Seidel, Lars ; Zeuch, Thomas ; Mauss, Fabian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-78e25d0f24853055cc9b79c745ca8f78808fac76d184f6edde2ec30fea0c3223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical engineering</topic><topic>Chemical Sciences</topic><topic>or physical chemistry</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shrestha, Krishna P</creatorcontrib><creatorcontrib>Seidel, Lars</creatorcontrib><creatorcontrib>Zeuch, Thomas</creatorcontrib><creatorcontrib>Mauss, Fabian</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shrestha, Krishna P</au><au>Seidel, Lars</au><au>Zeuch, Thomas</au><au>Mauss, Fabian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2018-10-18</date><risdate>2018</risdate><volume>32</volume><issue>10</issue><spage>10202</spage><epage>10217</epage><pages>10202-10217</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>This work introduces a newly developed reaction mechanism for the oxidation of ammonia in freely propagating and burner-stabilized premixed flames as well as shock-tube, jet-stirred reactor, and plug-flow reactor experiments. The paper mainly focuses on pure ammonia and ammonia–hydrogen fuel blends. The reaction mechanism also considers the formation of nitrogen oxides as well as the reduction of nitrogen oxides depending upon the conditions of the surrounding gas phase. Doping of the fuel blend with NO2 can result in acceleration of H2 autoignition via the reaction NO2 + HO2 ⇋ HONO + O2, followed by the thermal decomposition of HONO, or deceleration of H2 oxidation via NO2 + OH ⇋ NO + HO2. The concentration of HO2 is decisive for the active reaction pathway. The formation of NO in burner-stabilized premixed flames is shown to demonstrate the capability of the mechanism to be integrated into a mechanism for hydrocarbon oxidation.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.8b01056</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4794-0556</orcidid><orcidid>https://orcid.org/0000-0001-5672-7354</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2018-10, Vol.32 (10), p.10202-10217
issn 0887-0624
1520-5029
language eng
recordid cdi_hal_primary_oai_HAL_hal_02629067v1
source American Chemical Society Journals
subjects Chemical engineering
Chemical Sciences
or physical chemistry
Theoretical and
title Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detailed%20Kinetic%20Mechanism%20for%20the%20Oxidation%20of%20Ammonia%20Including%20the%20Formation%20and%20Reduction%20of%20Nitrogen%20Oxides&rft.jtitle=Energy%20&%20fuels&rft.au=Shrestha,%20Krishna%20P&rft.date=2018-10-18&rft.volume=32&rft.issue=10&rft.spage=10202&rft.epage=10217&rft.pages=10202-10217&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.8b01056&rft_dat=%3Cacs_hal_p%3Ec247616639%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true