Metabolic reconstructions identify plant 3‐methylglutaconyl‐CoA hydratase that is crucial for branched‐chain amino acid catabolism in mitochondria

Summary The proteinogenic branched‐chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2018-07, Vol.95 (2), p.358-370
Hauptverfasser: Latimer, Scott, Li, Yubing, Nguyen, Thuong T.H., Soubeyrand, Eric, Fatihi, Abdelhak, Elowsky, Christian G., Block, Anna, Pichersky, Eran, Basset, Gilles J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 370
container_issue 2
container_start_page 358
container_title The Plant journal : for cell and molecular biology
container_volume 95
creator Latimer, Scott
Li, Yubing
Nguyen, Thuong T.H.
Soubeyrand, Eric
Fatihi, Abdelhak
Elowsky, Christian G.
Block, Anna
Pichersky, Eran
Basset, Gilles J.
description Summary The proteinogenic branched‐chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant‐prokaryote comparative genomics detected candidates for 3‐methylglutaconyl‐CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non‐homologous N‐terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein‐fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3‐hydroxymethylglutaryl‐CoA into 3‐methylglutaconyl‐CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark‐induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3‐methylglutaconyl‐CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate. Significance Statement 3‐methylglutaconyl‐CoA hydratase is one of the ‘missing’ plant enzymes for the catabolism of leucine, an essential amino acid for vertebrates. The cognate pathway also serves as a vital energy source for plant tissues when carbohydrate availability is restricted.
doi_str_mv 10.1111/tpj.13955
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02628727v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2037061230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4225-20b68f5223bf606e75dd66d4cbeae8cf82150926f7634c52863b0da44da0f2563</originalsourceid><addsrcrecordid>eNp1kc1u1DAURiMEokNhwQsgS2xgkdY_sZMsRyNoQYNgUSR21o3tEI-ceLAdUHY8Qpc8H0-CS0qFkPDG1vXRudf-iuIpwWckr_N0PJwR1nJ-r9gQJnjJCPt0v9jgVuCyrgg9KR7FeMCY1ExUD4sT2tYVbQjeFD_emQSdd1ahYJSfYgqzSjYfkNVmSrZf0NHBlBD7-f16NGlY3Gc3J8js4nJp57doWHSABNGgNEBCNiKVLRYc6n1AXYBJDUZnWA1gJwSjnTwCZTVSsHaPI8oXo01eDX7SwcLj4kEPLpont_tp8fH1q6vdZbl_f_Fmt92XqqKUlxR3ouk5pazrBRam5loLoSvVGTCN6htKOG6p6GvBKsVpI1iHNVSVBtxTLthp8XL1DuDkMdgRwiI9WHm53cubGqaCNjWtv5LMvljZY_BfZhOTHG1UxuX_MX6OkmJWY0Eowxl9_g968HOY8ksyJRgXpGn_aq6CjzGY_m4CguVNtDJHK39Hm9lnt8a5G42-I_9kmYHzFfhmnVn-b5JXH96uyl8Lu7Ij</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063561896</pqid></control><display><type>article</type><title>Metabolic reconstructions identify plant 3‐methylglutaconyl‐CoA hydratase that is crucial for branched‐chain amino acid catabolism in mitochondria</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><creator>Latimer, Scott ; Li, Yubing ; Nguyen, Thuong T.H. ; Soubeyrand, Eric ; Fatihi, Abdelhak ; Elowsky, Christian G. ; Block, Anna ; Pichersky, Eran ; Basset, Gilles J.</creator><creatorcontrib>Latimer, Scott ; Li, Yubing ; Nguyen, Thuong T.H. ; Soubeyrand, Eric ; Fatihi, Abdelhak ; Elowsky, Christian G. ; Block, Anna ; Pichersky, Eran ; Basset, Gilles J.</creatorcontrib><description>Summary The proteinogenic branched‐chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant‐prokaryote comparative genomics detected candidates for 3‐methylglutaconyl‐CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non‐homologous N‐terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein‐fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3‐hydroxymethylglutaryl‐CoA into 3‐methylglutaconyl‐CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark‐induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3‐methylglutaconyl‐CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate. Significance Statement 3‐methylglutaconyl‐CoA hydratase is one of the ‘missing’ plant enzymes for the catabolism of leucine, an essential amino acid for vertebrates. The cognate pathway also serves as a vital energy source for plant tissues when carbohydrate availability is restricted.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.13955</identifier><identifier>PMID: 29742810</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Accumulation ; Alternative energy ; Alternative energy sources ; Amino acids ; Arabidopsis ; Arabidopsis thaliana ; Biodegradation ; branched‐chain amino acid ; Carbohydrates ; Catabolism ; Chain branching ; Chains ; Chemical and Process Engineering ; comparative genomics ; Degradation ; Dehydration ; Electron transport ; Energy sources ; Engineering Sciences ; Essential nutrients ; Fluorescence ; Food engineering ; Fusion protein ; Genomics ; Green fluorescent protein ; Homology ; Intermediates ; Isoleucine ; Leaves ; Leucine ; Life Sciences ; Mevalonic acid ; Mitochondria ; mitochondrion ; Nutrients ; Phenotypes ; Proteins ; Rosette ; Seeds ; Senescence ; Tricarboxylic acid cycle ; ubiquinone ; Valine</subject><ispartof>The Plant journal : for cell and molecular biology, 2018-07, Vol.95 (2), p.358-370</ispartof><rights>2018 The Authors The Plant Journal © 2018 John Wiley &amp; Sons Ltd</rights><rights>2018 The Authors The Plant Journal © 2018 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4225-20b68f5223bf606e75dd66d4cbeae8cf82150926f7634c52863b0da44da0f2563</citedby><cites>FETCH-LOGICAL-c4225-20b68f5223bf606e75dd66d4cbeae8cf82150926f7634c52863b0da44da0f2563</cites><orcidid>0000-0001-5331-7392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.13955$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.13955$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29742810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02628727$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Latimer, Scott</creatorcontrib><creatorcontrib>Li, Yubing</creatorcontrib><creatorcontrib>Nguyen, Thuong T.H.</creatorcontrib><creatorcontrib>Soubeyrand, Eric</creatorcontrib><creatorcontrib>Fatihi, Abdelhak</creatorcontrib><creatorcontrib>Elowsky, Christian G.</creatorcontrib><creatorcontrib>Block, Anna</creatorcontrib><creatorcontrib>Pichersky, Eran</creatorcontrib><creatorcontrib>Basset, Gilles J.</creatorcontrib><title>Metabolic reconstructions identify plant 3‐methylglutaconyl‐CoA hydratase that is crucial for branched‐chain amino acid catabolism in mitochondria</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary The proteinogenic branched‐chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant‐prokaryote comparative genomics detected candidates for 3‐methylglutaconyl‐CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non‐homologous N‐terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein‐fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3‐hydroxymethylglutaryl‐CoA into 3‐methylglutaconyl‐CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark‐induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3‐methylglutaconyl‐CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate. Significance Statement 3‐methylglutaconyl‐CoA hydratase is one of the ‘missing’ plant enzymes for the catabolism of leucine, an essential amino acid for vertebrates. The cognate pathway also serves as a vital energy source for plant tissues when carbohydrate availability is restricted.</description><subject>Accumulation</subject><subject>Alternative energy</subject><subject>Alternative energy sources</subject><subject>Amino acids</subject><subject>Arabidopsis</subject><subject>Arabidopsis thaliana</subject><subject>Biodegradation</subject><subject>branched‐chain amino acid</subject><subject>Carbohydrates</subject><subject>Catabolism</subject><subject>Chain branching</subject><subject>Chains</subject><subject>Chemical and Process Engineering</subject><subject>comparative genomics</subject><subject>Degradation</subject><subject>Dehydration</subject><subject>Electron transport</subject><subject>Energy sources</subject><subject>Engineering Sciences</subject><subject>Essential nutrients</subject><subject>Fluorescence</subject><subject>Food engineering</subject><subject>Fusion protein</subject><subject>Genomics</subject><subject>Green fluorescent protein</subject><subject>Homology</subject><subject>Intermediates</subject><subject>Isoleucine</subject><subject>Leaves</subject><subject>Leucine</subject><subject>Life Sciences</subject><subject>Mevalonic acid</subject><subject>Mitochondria</subject><subject>mitochondrion</subject><subject>Nutrients</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Rosette</subject><subject>Seeds</subject><subject>Senescence</subject><subject>Tricarboxylic acid cycle</subject><subject>ubiquinone</subject><subject>Valine</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAURiMEokNhwQsgS2xgkdY_sZMsRyNoQYNgUSR21o3tEI-ceLAdUHY8Qpc8H0-CS0qFkPDG1vXRudf-iuIpwWckr_N0PJwR1nJ-r9gQJnjJCPt0v9jgVuCyrgg9KR7FeMCY1ExUD4sT2tYVbQjeFD_emQSdd1ahYJSfYgqzSjYfkNVmSrZf0NHBlBD7-f16NGlY3Gc3J8js4nJp57doWHSABNGgNEBCNiKVLRYc6n1AXYBJDUZnWA1gJwSjnTwCZTVSsHaPI8oXo01eDX7SwcLj4kEPLpont_tp8fH1q6vdZbl_f_Fmt92XqqKUlxR3ouk5pazrBRam5loLoSvVGTCN6htKOG6p6GvBKsVpI1iHNVSVBtxTLthp8XL1DuDkMdgRwiI9WHm53cubGqaCNjWtv5LMvljZY_BfZhOTHG1UxuX_MX6OkmJWY0Eowxl9_g968HOY8ksyJRgXpGn_aq6CjzGY_m4CguVNtDJHK39Hm9lnt8a5G42-I_9kmYHzFfhmnVn-b5JXH96uyl8Lu7Ij</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Latimer, Scott</creator><creator>Li, Yubing</creator><creator>Nguyen, Thuong T.H.</creator><creator>Soubeyrand, Eric</creator><creator>Fatihi, Abdelhak</creator><creator>Elowsky, Christian G.</creator><creator>Block, Anna</creator><creator>Pichersky, Eran</creator><creator>Basset, Gilles J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5331-7392</orcidid></search><sort><creationdate>201807</creationdate><title>Metabolic reconstructions identify plant 3‐methylglutaconyl‐CoA hydratase that is crucial for branched‐chain amino acid catabolism in mitochondria</title><author>Latimer, Scott ; Li, Yubing ; Nguyen, Thuong T.H. ; Soubeyrand, Eric ; Fatihi, Abdelhak ; Elowsky, Christian G. ; Block, Anna ; Pichersky, Eran ; Basset, Gilles J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4225-20b68f5223bf606e75dd66d4cbeae8cf82150926f7634c52863b0da44da0f2563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Alternative energy</topic><topic>Alternative energy sources</topic><topic>Amino acids</topic><topic>Arabidopsis</topic><topic>Arabidopsis thaliana</topic><topic>Biodegradation</topic><topic>branched‐chain amino acid</topic><topic>Carbohydrates</topic><topic>Catabolism</topic><topic>Chain branching</topic><topic>Chains</topic><topic>Chemical and Process Engineering</topic><topic>comparative genomics</topic><topic>Degradation</topic><topic>Dehydration</topic><topic>Electron transport</topic><topic>Energy sources</topic><topic>Engineering Sciences</topic><topic>Essential nutrients</topic><topic>Fluorescence</topic><topic>Food engineering</topic><topic>Fusion protein</topic><topic>Genomics</topic><topic>Green fluorescent protein</topic><topic>Homology</topic><topic>Intermediates</topic><topic>Isoleucine</topic><topic>Leaves</topic><topic>Leucine</topic><topic>Life Sciences</topic><topic>Mevalonic acid</topic><topic>Mitochondria</topic><topic>mitochondrion</topic><topic>Nutrients</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Rosette</topic><topic>Seeds</topic><topic>Senescence</topic><topic>Tricarboxylic acid cycle</topic><topic>ubiquinone</topic><topic>Valine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Latimer, Scott</creatorcontrib><creatorcontrib>Li, Yubing</creatorcontrib><creatorcontrib>Nguyen, Thuong T.H.</creatorcontrib><creatorcontrib>Soubeyrand, Eric</creatorcontrib><creatorcontrib>Fatihi, Abdelhak</creatorcontrib><creatorcontrib>Elowsky, Christian G.</creatorcontrib><creatorcontrib>Block, Anna</creatorcontrib><creatorcontrib>Pichersky, Eran</creatorcontrib><creatorcontrib>Basset, Gilles J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latimer, Scott</au><au>Li, Yubing</au><au>Nguyen, Thuong T.H.</au><au>Soubeyrand, Eric</au><au>Fatihi, Abdelhak</au><au>Elowsky, Christian G.</au><au>Block, Anna</au><au>Pichersky, Eran</au><au>Basset, Gilles J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic reconstructions identify plant 3‐methylglutaconyl‐CoA hydratase that is crucial for branched‐chain amino acid catabolism in mitochondria</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2018-07</date><risdate>2018</risdate><volume>95</volume><issue>2</issue><spage>358</spage><epage>370</epage><pages>358-370</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary The proteinogenic branched‐chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant‐prokaryote comparative genomics detected candidates for 3‐methylglutaconyl‐CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non‐homologous N‐terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein‐fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3‐hydroxymethylglutaryl‐CoA into 3‐methylglutaconyl‐CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark‐induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3‐methylglutaconyl‐CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate. Significance Statement 3‐methylglutaconyl‐CoA hydratase is one of the ‘missing’ plant enzymes for the catabolism of leucine, an essential amino acid for vertebrates. The cognate pathway also serves as a vital energy source for plant tissues when carbohydrate availability is restricted.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>29742810</pmid><doi>10.1111/tpj.13955</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5331-7392</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2018-07, Vol.95 (2), p.358-370
issn 0960-7412
1365-313X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02628727v1
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals
subjects Accumulation
Alternative energy
Alternative energy sources
Amino acids
Arabidopsis
Arabidopsis thaliana
Biodegradation
branched‐chain amino acid
Carbohydrates
Catabolism
Chain branching
Chains
Chemical and Process Engineering
comparative genomics
Degradation
Dehydration
Electron transport
Energy sources
Engineering Sciences
Essential nutrients
Fluorescence
Food engineering
Fusion protein
Genomics
Green fluorescent protein
Homology
Intermediates
Isoleucine
Leaves
Leucine
Life Sciences
Mevalonic acid
Mitochondria
mitochondrion
Nutrients
Phenotypes
Proteins
Rosette
Seeds
Senescence
Tricarboxylic acid cycle
ubiquinone
Valine
title Metabolic reconstructions identify plant 3‐methylglutaconyl‐CoA hydratase that is crucial for branched‐chain amino acid catabolism in mitochondria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20reconstructions%20identify%20plant%203%E2%80%90methylglutaconyl%E2%80%90CoA%20hydratase%20that%20is%20crucial%20for%20branched%E2%80%90chain%20amino%20acid%20catabolism%20in%20mitochondria&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Latimer,%20Scott&rft.date=2018-07&rft.volume=95&rft.issue=2&rft.spage=358&rft.epage=370&rft.pages=358-370&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.13955&rft_dat=%3Cproquest_hal_p%3E2037061230%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063561896&rft_id=info:pmid/29742810&rfr_iscdi=true