Metabolic reconstructions identify plant 3‐methylglutaconyl‐CoA hydratase that is crucial for branched‐chain amino acid catabolism in mitochondria
Summary The proteinogenic branched‐chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermed...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2018-07, Vol.95 (2), p.358-370 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 370 |
---|---|
container_issue | 2 |
container_start_page | 358 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 95 |
creator | Latimer, Scott Li, Yubing Nguyen, Thuong T.H. Soubeyrand, Eric Fatihi, Abdelhak Elowsky, Christian G. Block, Anna Pichersky, Eran Basset, Gilles J. |
description | Summary
The proteinogenic branched‐chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant‐prokaryote comparative genomics detected candidates for 3‐methylglutaconyl‐CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non‐homologous N‐terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein‐fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3‐hydroxymethylglutaryl‐CoA into 3‐methylglutaconyl‐CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark‐induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3‐methylglutaconyl‐CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate.
Significance Statement
3‐methylglutaconyl‐CoA hydratase is one of the ‘missing’ plant enzymes for the catabolism of leucine, an essential amino acid for vertebrates. The cognate pathway also serves as a vital energy source for plant tissues when carbohydrate availability is restricted. |
doi_str_mv | 10.1111/tpj.13955 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02628727v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2037061230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4225-20b68f5223bf606e75dd66d4cbeae8cf82150926f7634c52863b0da44da0f2563</originalsourceid><addsrcrecordid>eNp1kc1u1DAURiMEokNhwQsgS2xgkdY_sZMsRyNoQYNgUSR21o3tEI-ceLAdUHY8Qpc8H0-CS0qFkPDG1vXRudf-iuIpwWckr_N0PJwR1nJ-r9gQJnjJCPt0v9jgVuCyrgg9KR7FeMCY1ExUD4sT2tYVbQjeFD_emQSdd1ahYJSfYgqzSjYfkNVmSrZf0NHBlBD7-f16NGlY3Gc3J8js4nJp57doWHSABNGgNEBCNiKVLRYc6n1AXYBJDUZnWA1gJwSjnTwCZTVSsHaPI8oXo01eDX7SwcLj4kEPLpont_tp8fH1q6vdZbl_f_Fmt92XqqKUlxR3ouk5pazrBRam5loLoSvVGTCN6htKOG6p6GvBKsVpI1iHNVSVBtxTLthp8XL1DuDkMdgRwiI9WHm53cubGqaCNjWtv5LMvljZY_BfZhOTHG1UxuX_MX6OkmJWY0Eowxl9_g968HOY8ksyJRgXpGn_aq6CjzGY_m4CguVNtDJHK39Hm9lnt8a5G42-I_9kmYHzFfhmnVn-b5JXH96uyl8Lu7Ij</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063561896</pqid></control><display><type>article</type><title>Metabolic reconstructions identify plant 3‐methylglutaconyl‐CoA hydratase that is crucial for branched‐chain amino acid catabolism in mitochondria</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><creator>Latimer, Scott ; Li, Yubing ; Nguyen, Thuong T.H. ; Soubeyrand, Eric ; Fatihi, Abdelhak ; Elowsky, Christian G. ; Block, Anna ; Pichersky, Eran ; Basset, Gilles J.</creator><creatorcontrib>Latimer, Scott ; Li, Yubing ; Nguyen, Thuong T.H. ; Soubeyrand, Eric ; Fatihi, Abdelhak ; Elowsky, Christian G. ; Block, Anna ; Pichersky, Eran ; Basset, Gilles J.</creatorcontrib><description>Summary
The proteinogenic branched‐chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant‐prokaryote comparative genomics detected candidates for 3‐methylglutaconyl‐CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non‐homologous N‐terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein‐fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3‐hydroxymethylglutaryl‐CoA into 3‐methylglutaconyl‐CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark‐induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3‐methylglutaconyl‐CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate.
Significance Statement
3‐methylglutaconyl‐CoA hydratase is one of the ‘missing’ plant enzymes for the catabolism of leucine, an essential amino acid for vertebrates. The cognate pathway also serves as a vital energy source for plant tissues when carbohydrate availability is restricted.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.13955</identifier><identifier>PMID: 29742810</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Accumulation ; Alternative energy ; Alternative energy sources ; Amino acids ; Arabidopsis ; Arabidopsis thaliana ; Biodegradation ; branched‐chain amino acid ; Carbohydrates ; Catabolism ; Chain branching ; Chains ; Chemical and Process Engineering ; comparative genomics ; Degradation ; Dehydration ; Electron transport ; Energy sources ; Engineering Sciences ; Essential nutrients ; Fluorescence ; Food engineering ; Fusion protein ; Genomics ; Green fluorescent protein ; Homology ; Intermediates ; Isoleucine ; Leaves ; Leucine ; Life Sciences ; Mevalonic acid ; Mitochondria ; mitochondrion ; Nutrients ; Phenotypes ; Proteins ; Rosette ; Seeds ; Senescence ; Tricarboxylic acid cycle ; ubiquinone ; Valine</subject><ispartof>The Plant journal : for cell and molecular biology, 2018-07, Vol.95 (2), p.358-370</ispartof><rights>2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd</rights><rights>2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4225-20b68f5223bf606e75dd66d4cbeae8cf82150926f7634c52863b0da44da0f2563</citedby><cites>FETCH-LOGICAL-c4225-20b68f5223bf606e75dd66d4cbeae8cf82150926f7634c52863b0da44da0f2563</cites><orcidid>0000-0001-5331-7392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.13955$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.13955$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29742810$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02628727$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Latimer, Scott</creatorcontrib><creatorcontrib>Li, Yubing</creatorcontrib><creatorcontrib>Nguyen, Thuong T.H.</creatorcontrib><creatorcontrib>Soubeyrand, Eric</creatorcontrib><creatorcontrib>Fatihi, Abdelhak</creatorcontrib><creatorcontrib>Elowsky, Christian G.</creatorcontrib><creatorcontrib>Block, Anna</creatorcontrib><creatorcontrib>Pichersky, Eran</creatorcontrib><creatorcontrib>Basset, Gilles J.</creatorcontrib><title>Metabolic reconstructions identify plant 3‐methylglutaconyl‐CoA hydratase that is crucial for branched‐chain amino acid catabolism in mitochondria</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary
The proteinogenic branched‐chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant‐prokaryote comparative genomics detected candidates for 3‐methylglutaconyl‐CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non‐homologous N‐terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein‐fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3‐hydroxymethylglutaryl‐CoA into 3‐methylglutaconyl‐CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark‐induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3‐methylglutaconyl‐CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate.
Significance Statement
3‐methylglutaconyl‐CoA hydratase is one of the ‘missing’ plant enzymes for the catabolism of leucine, an essential amino acid for vertebrates. The cognate pathway also serves as a vital energy source for plant tissues when carbohydrate availability is restricted.</description><subject>Accumulation</subject><subject>Alternative energy</subject><subject>Alternative energy sources</subject><subject>Amino acids</subject><subject>Arabidopsis</subject><subject>Arabidopsis thaliana</subject><subject>Biodegradation</subject><subject>branched‐chain amino acid</subject><subject>Carbohydrates</subject><subject>Catabolism</subject><subject>Chain branching</subject><subject>Chains</subject><subject>Chemical and Process Engineering</subject><subject>comparative genomics</subject><subject>Degradation</subject><subject>Dehydration</subject><subject>Electron transport</subject><subject>Energy sources</subject><subject>Engineering Sciences</subject><subject>Essential nutrients</subject><subject>Fluorescence</subject><subject>Food engineering</subject><subject>Fusion protein</subject><subject>Genomics</subject><subject>Green fluorescent protein</subject><subject>Homology</subject><subject>Intermediates</subject><subject>Isoleucine</subject><subject>Leaves</subject><subject>Leucine</subject><subject>Life Sciences</subject><subject>Mevalonic acid</subject><subject>Mitochondria</subject><subject>mitochondrion</subject><subject>Nutrients</subject><subject>Phenotypes</subject><subject>Proteins</subject><subject>Rosette</subject><subject>Seeds</subject><subject>Senescence</subject><subject>Tricarboxylic acid cycle</subject><subject>ubiquinone</subject><subject>Valine</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAURiMEokNhwQsgS2xgkdY_sZMsRyNoQYNgUSR21o3tEI-ceLAdUHY8Qpc8H0-CS0qFkPDG1vXRudf-iuIpwWckr_N0PJwR1nJ-r9gQJnjJCPt0v9jgVuCyrgg9KR7FeMCY1ExUD4sT2tYVbQjeFD_emQSdd1ahYJSfYgqzSjYfkNVmSrZf0NHBlBD7-f16NGlY3Gc3J8js4nJp57doWHSABNGgNEBCNiKVLRYc6n1AXYBJDUZnWA1gJwSjnTwCZTVSsHaPI8oXo01eDX7SwcLj4kEPLpont_tp8fH1q6vdZbl_f_Fmt92XqqKUlxR3ouk5pazrBRam5loLoSvVGTCN6htKOG6p6GvBKsVpI1iHNVSVBtxTLthp8XL1DuDkMdgRwiI9WHm53cubGqaCNjWtv5LMvljZY_BfZhOTHG1UxuX_MX6OkmJWY0Eowxl9_g968HOY8ksyJRgXpGn_aq6CjzGY_m4CguVNtDJHK39Hm9lnt8a5G42-I_9kmYHzFfhmnVn-b5JXH96uyl8Lu7Ij</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Latimer, Scott</creator><creator>Li, Yubing</creator><creator>Nguyen, Thuong T.H.</creator><creator>Soubeyrand, Eric</creator><creator>Fatihi, Abdelhak</creator><creator>Elowsky, Christian G.</creator><creator>Block, Anna</creator><creator>Pichersky, Eran</creator><creator>Basset, Gilles J.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5331-7392</orcidid></search><sort><creationdate>201807</creationdate><title>Metabolic reconstructions identify plant 3‐methylglutaconyl‐CoA hydratase that is crucial for branched‐chain amino acid catabolism in mitochondria</title><author>Latimer, Scott ; Li, Yubing ; Nguyen, Thuong T.H. ; Soubeyrand, Eric ; Fatihi, Abdelhak ; Elowsky, Christian G. ; Block, Anna ; Pichersky, Eran ; Basset, Gilles J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4225-20b68f5223bf606e75dd66d4cbeae8cf82150926f7634c52863b0da44da0f2563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Alternative energy</topic><topic>Alternative energy sources</topic><topic>Amino acids</topic><topic>Arabidopsis</topic><topic>Arabidopsis thaliana</topic><topic>Biodegradation</topic><topic>branched‐chain amino acid</topic><topic>Carbohydrates</topic><topic>Catabolism</topic><topic>Chain branching</topic><topic>Chains</topic><topic>Chemical and Process Engineering</topic><topic>comparative genomics</topic><topic>Degradation</topic><topic>Dehydration</topic><topic>Electron transport</topic><topic>Energy sources</topic><topic>Engineering Sciences</topic><topic>Essential nutrients</topic><topic>Fluorescence</topic><topic>Food engineering</topic><topic>Fusion protein</topic><topic>Genomics</topic><topic>Green fluorescent protein</topic><topic>Homology</topic><topic>Intermediates</topic><topic>Isoleucine</topic><topic>Leaves</topic><topic>Leucine</topic><topic>Life Sciences</topic><topic>Mevalonic acid</topic><topic>Mitochondria</topic><topic>mitochondrion</topic><topic>Nutrients</topic><topic>Phenotypes</topic><topic>Proteins</topic><topic>Rosette</topic><topic>Seeds</topic><topic>Senescence</topic><topic>Tricarboxylic acid cycle</topic><topic>ubiquinone</topic><topic>Valine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Latimer, Scott</creatorcontrib><creatorcontrib>Li, Yubing</creatorcontrib><creatorcontrib>Nguyen, Thuong T.H.</creatorcontrib><creatorcontrib>Soubeyrand, Eric</creatorcontrib><creatorcontrib>Fatihi, Abdelhak</creatorcontrib><creatorcontrib>Elowsky, Christian G.</creatorcontrib><creatorcontrib>Block, Anna</creatorcontrib><creatorcontrib>Pichersky, Eran</creatorcontrib><creatorcontrib>Basset, Gilles J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latimer, Scott</au><au>Li, Yubing</au><au>Nguyen, Thuong T.H.</au><au>Soubeyrand, Eric</au><au>Fatihi, Abdelhak</au><au>Elowsky, Christian G.</au><au>Block, Anna</au><au>Pichersky, Eran</au><au>Basset, Gilles J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic reconstructions identify plant 3‐methylglutaconyl‐CoA hydratase that is crucial for branched‐chain amino acid catabolism in mitochondria</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2018-07</date><risdate>2018</risdate><volume>95</volume><issue>2</issue><spage>358</spage><epage>370</epage><pages>358-370</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary
The proteinogenic branched‐chain amino acids (BCAAs) leucine, isoleucine and valine are essential nutrients for mammals. In plants, BCAAs double as alternative energy sources when carbohydrates become limiting, the catabolism of BCAAs providing electrons to the respiratory chain and intermediates to the tricarboxylic acid cycle. Yet, the actual architecture of the degradation pathways of BCAAs is not well understood. In this study, gene network modeling in Arabidopsis and rice, and plant‐prokaryote comparative genomics detected candidates for 3‐methylglutaconyl‐CoA hydratase (4.2.1.18), one of the missing plant enzymes of leucine catabolism. Alignments of these protein candidates sampled from various spermatophytes revealed non‐homologous N‐terminal extensions that are lacking in their bacterial counterparts, and green fluorescent protein‐fusion experiments demonstrated that the Arabidopsis protein, product of gene At4g16800, is targeted to mitochondria. Recombinant At4g16800 catalyzed the dehydration of 3‐hydroxymethylglutaryl‐CoA into 3‐methylglutaconyl‐CoA, and displayed kinetic features similar to those of its prokaryotic homolog. When at4g16800 knockout plants were subjected to dark‐induced carbon starvation, their rosette leaves displayed accelerated senescence as compared with control plants, and this phenotype was paralleled by a marked increase in the accumulation of free and total leucine, isoleucine and valine. The seeds of the at4g16800 mutant showed a similar accumulation of free BCAAs. These data suggest that 3‐methylglutaconyl‐CoA hydratase is not solely involved in the degradation of leucine, but is also a significant contributor to that of isoleucine and valine. Furthermore, evidence is shown that unlike the situation observed in Trypanosomatidae, leucine catabolism does not contribute to the formation of the terpenoid precursor mevalonate.
Significance Statement
3‐methylglutaconyl‐CoA hydratase is one of the ‘missing’ plant enzymes for the catabolism of leucine, an essential amino acid for vertebrates. The cognate pathway also serves as a vital energy source for plant tissues when carbohydrate availability is restricted.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>29742810</pmid><doi>10.1111/tpj.13955</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5331-7392</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2018-07, Vol.95 (2), p.358-370 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02628727v1 |
source | Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals |
subjects | Accumulation Alternative energy Alternative energy sources Amino acids Arabidopsis Arabidopsis thaliana Biodegradation branched‐chain amino acid Carbohydrates Catabolism Chain branching Chains Chemical and Process Engineering comparative genomics Degradation Dehydration Electron transport Energy sources Engineering Sciences Essential nutrients Fluorescence Food engineering Fusion protein Genomics Green fluorescent protein Homology Intermediates Isoleucine Leaves Leucine Life Sciences Mevalonic acid Mitochondria mitochondrion Nutrients Phenotypes Proteins Rosette Seeds Senescence Tricarboxylic acid cycle ubiquinone Valine |
title | Metabolic reconstructions identify plant 3‐methylglutaconyl‐CoA hydratase that is crucial for branched‐chain amino acid catabolism in mitochondria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20reconstructions%20identify%20plant%203%E2%80%90methylglutaconyl%E2%80%90CoA%20hydratase%20that%20is%20crucial%20for%20branched%E2%80%90chain%20amino%20acid%20catabolism%20in%20mitochondria&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Latimer,%20Scott&rft.date=2018-07&rft.volume=95&rft.issue=2&rft.spage=358&rft.epage=370&rft.pages=358-370&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.13955&rft_dat=%3Cproquest_hal_p%3E2037061230%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063561896&rft_id=info:pmid/29742810&rfr_iscdi=true |