Using Stacking to Average Bayesian Predictive Distributions (with Discussion)
Bayesian model averaging is flawed in the M-open setting in which the true data-generating process is not one of the candidate models being fit. We take the idea of stacking from the point estimation literature and generalize to the combination of predictive distributions. We extend the utility func...
Gespeichert in:
Veröffentlicht in: | Bayesian analysis 2018-09, Vol.13 (3), p.917-1003 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1003 |
---|---|
container_issue | 3 |
container_start_page | 917 |
container_title | Bayesian analysis |
container_volume | 13 |
creator | Yao, Yuling Vehtari, Aki Simpson, Daniel Gelman, Andrew |
description | Bayesian model averaging is flawed in the M-open setting in which the true data-generating process is not one of the candidate models being fit. We take the idea of stacking from the point estimation literature and generalize to the combination of predictive distributions. We extend the utility function to any proper scoring rule and use Pareto smoothed importance sampling to efficiently compute the required leave-one-out posterior distributions. We compare stacking of predictive distributions to several alternatives: stacking of means, Bayesian model averaging (BMA), Pseudo-BMA, and a variant of Pseudo-BMA that is stabilized using the Bayesian bootstrap. Based on simulations and real-data applications, we recommend stacking of predictive distributions, with bootstrapped-Pseudo-BMA as an approximate alternative when computation cost is an issue. |
doi_str_mv | 10.1214/17-BA1091 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02628706v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02628706v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-65b7f7383161b58ddfaae33834c7b8ae6e1d1791c67bf17af8968093364d7fa33</originalsourceid><addsrcrecordid>eNpFkE9PAjEUxBujiYge_AZ7lMNq35btn-OCKCYYTZRz87bbQhVZ0xYM315WjJ7evF9m5jCEXAK9hgKGNyDyUQVUwRHpgWKQc67o8Y_mOVWiPCVnMb5RWpYCRI88zqNfL7KXhOa9E6nNqq0NuLDZCHc2elxnz8E23iS_tdmtjyn4epN8u47Z1ZdPy46ZTYx7MjgnJw5X0V783j6Z301ex9N89nT_MK5muSm4TDkva-EEkww41KVsGodo2f4fGlFLtNxCA0KB4aJ2INBJxSVVjPFhIxwy1ieDQ-8SV_oz-A8MO92i19NqpjtGC15IQfkW_r0mtDEG6_4CQHW3mQahD5uxb7h9XW0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using Stacking to Average Bayesian Predictive Distributions (with Discussion)</title><source>Project Euclid Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yao, Yuling ; Vehtari, Aki ; Simpson, Daniel ; Gelman, Andrew</creator><creatorcontrib>Yao, Yuling ; Vehtari, Aki ; Simpson, Daniel ; Gelman, Andrew</creatorcontrib><description>Bayesian model averaging is flawed in the M-open setting in which the true data-generating process is not one of the candidate models being fit. We take the idea of stacking from the point estimation literature and generalize to the combination of predictive distributions. We extend the utility function to any proper scoring rule and use Pareto smoothed importance sampling to efficiently compute the required leave-one-out posterior distributions. We compare stacking of predictive distributions to several alternatives: stacking of means, Bayesian model averaging (BMA), Pseudo-BMA, and a variant of Pseudo-BMA that is stabilized using the Bayesian bootstrap. Based on simulations and real-data applications, we recommend stacking of predictive distributions, with bootstrapped-Pseudo-BMA as an approximate alternative when computation cost is an issue.</description><identifier>ISSN: 1936-0975</identifier><identifier>EISSN: 1931-6690</identifier><identifier>DOI: 10.1214/17-BA1091</identifier><language>eng</language><publisher>International Society for Bayesian Analysis</publisher><subject>Computer Science ; Mathematics</subject><ispartof>Bayesian analysis, 2018-09, Vol.13 (3), p.917-1003</ispartof><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-65b7f7383161b58ddfaae33834c7b8ae6e1d1791c67bf17af8968093364d7fa33</citedby><cites>FETCH-LOGICAL-c268t-65b7f7383161b58ddfaae33834c7b8ae6e1d1791c67bf17af8968093364d7fa33</cites><orcidid>0000-0002-7489-0179 ; 0000-0002-3551-4891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02628706$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Yuling</creatorcontrib><creatorcontrib>Vehtari, Aki</creatorcontrib><creatorcontrib>Simpson, Daniel</creatorcontrib><creatorcontrib>Gelman, Andrew</creatorcontrib><title>Using Stacking to Average Bayesian Predictive Distributions (with Discussion)</title><title>Bayesian analysis</title><description>Bayesian model averaging is flawed in the M-open setting in which the true data-generating process is not one of the candidate models being fit. We take the idea of stacking from the point estimation literature and generalize to the combination of predictive distributions. We extend the utility function to any proper scoring rule and use Pareto smoothed importance sampling to efficiently compute the required leave-one-out posterior distributions. We compare stacking of predictive distributions to several alternatives: stacking of means, Bayesian model averaging (BMA), Pseudo-BMA, and a variant of Pseudo-BMA that is stabilized using the Bayesian bootstrap. Based on simulations and real-data applications, we recommend stacking of predictive distributions, with bootstrapped-Pseudo-BMA as an approximate alternative when computation cost is an issue.</description><subject>Computer Science</subject><subject>Mathematics</subject><issn>1936-0975</issn><issn>1931-6690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkE9PAjEUxBujiYge_AZ7lMNq35btn-OCKCYYTZRz87bbQhVZ0xYM315WjJ7evF9m5jCEXAK9hgKGNyDyUQVUwRHpgWKQc67o8Y_mOVWiPCVnMb5RWpYCRI88zqNfL7KXhOa9E6nNqq0NuLDZCHc2elxnz8E23iS_tdmtjyn4epN8u47Z1ZdPy46ZTYx7MjgnJw5X0V783j6Z301ex9N89nT_MK5muSm4TDkva-EEkww41KVsGodo2f4fGlFLtNxCA0KB4aJ2INBJxSVVjPFhIxwy1ieDQ-8SV_oz-A8MO92i19NqpjtGC15IQfkW_r0mtDEG6_4CQHW3mQahD5uxb7h9XW0</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Yao, Yuling</creator><creator>Vehtari, Aki</creator><creator>Simpson, Daniel</creator><creator>Gelman, Andrew</creator><general>International Society for Bayesian Analysis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7489-0179</orcidid><orcidid>https://orcid.org/0000-0002-3551-4891</orcidid></search><sort><creationdate>20180901</creationdate><title>Using Stacking to Average Bayesian Predictive Distributions (with Discussion)</title><author>Yao, Yuling ; Vehtari, Aki ; Simpson, Daniel ; Gelman, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-65b7f7383161b58ddfaae33834c7b8ae6e1d1791c67bf17af8968093364d7fa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer Science</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Yuling</creatorcontrib><creatorcontrib>Vehtari, Aki</creatorcontrib><creatorcontrib>Simpson, Daniel</creatorcontrib><creatorcontrib>Gelman, Andrew</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Bayesian analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Yuling</au><au>Vehtari, Aki</au><au>Simpson, Daniel</au><au>Gelman, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Stacking to Average Bayesian Predictive Distributions (with Discussion)</atitle><jtitle>Bayesian analysis</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>13</volume><issue>3</issue><spage>917</spage><epage>1003</epage><pages>917-1003</pages><issn>1936-0975</issn><eissn>1931-6690</eissn><abstract>Bayesian model averaging is flawed in the M-open setting in which the true data-generating process is not one of the candidate models being fit. We take the idea of stacking from the point estimation literature and generalize to the combination of predictive distributions. We extend the utility function to any proper scoring rule and use Pareto smoothed importance sampling to efficiently compute the required leave-one-out posterior distributions. We compare stacking of predictive distributions to several alternatives: stacking of means, Bayesian model averaging (BMA), Pseudo-BMA, and a variant of Pseudo-BMA that is stabilized using the Bayesian bootstrap. Based on simulations and real-data applications, we recommend stacking of predictive distributions, with bootstrapped-Pseudo-BMA as an approximate alternative when computation cost is an issue.</abstract><pub>International Society for Bayesian Analysis</pub><doi>10.1214/17-BA1091</doi><tpages>87</tpages><orcidid>https://orcid.org/0000-0002-7489-0179</orcidid><orcidid>https://orcid.org/0000-0002-3551-4891</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0975 |
ispartof | Bayesian analysis, 2018-09, Vol.13 (3), p.917-1003 |
issn | 1936-0975 1931-6690 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02628706v1 |
source | Project Euclid Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Computer Science Mathematics |
title | Using Stacking to Average Bayesian Predictive Distributions (with Discussion) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Stacking%20to%20Average%20Bayesian%20Predictive%20Distributions%20(with%20Discussion)&rft.jtitle=Bayesian%20analysis&rft.au=Yao,%20Yuling&rft.date=2018-09-01&rft.volume=13&rft.issue=3&rft.spage=917&rft.epage=1003&rft.pages=917-1003&rft.issn=1936-0975&rft.eissn=1931-6690&rft_id=info:doi/10.1214/17-BA1091&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02628706v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |