Using Stacking to Average Bayesian Predictive Distributions (with Discussion)

Bayesian model averaging is flawed in the M-open setting in which the true data-generating process is not one of the candidate models being fit. We take the idea of stacking from the point estimation literature and generalize to the combination of predictive distributions. We extend the utility func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bayesian analysis 2018-09, Vol.13 (3), p.917-1003
Hauptverfasser: Yao, Yuling, Vehtari, Aki, Simpson, Daniel, Gelman, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1003
container_issue 3
container_start_page 917
container_title Bayesian analysis
container_volume 13
creator Yao, Yuling
Vehtari, Aki
Simpson, Daniel
Gelman, Andrew
description Bayesian model averaging is flawed in the M-open setting in which the true data-generating process is not one of the candidate models being fit. We take the idea of stacking from the point estimation literature and generalize to the combination of predictive distributions. We extend the utility function to any proper scoring rule and use Pareto smoothed importance sampling to efficiently compute the required leave-one-out posterior distributions. We compare stacking of predictive distributions to several alternatives: stacking of means, Bayesian model averaging (BMA), Pseudo-BMA, and a variant of Pseudo-BMA that is stabilized using the Bayesian bootstrap. Based on simulations and real-data applications, we recommend stacking of predictive distributions, with bootstrapped-Pseudo-BMA as an approximate alternative when computation cost is an issue.
doi_str_mv 10.1214/17-BA1091
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02628706v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02628706v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-65b7f7383161b58ddfaae33834c7b8ae6e1d1791c67bf17af8968093364d7fa33</originalsourceid><addsrcrecordid>eNpFkE9PAjEUxBujiYge_AZ7lMNq35btn-OCKCYYTZRz87bbQhVZ0xYM315WjJ7evF9m5jCEXAK9hgKGNyDyUQVUwRHpgWKQc67o8Y_mOVWiPCVnMb5RWpYCRI88zqNfL7KXhOa9E6nNqq0NuLDZCHc2elxnz8E23iS_tdmtjyn4epN8u47Z1ZdPy46ZTYx7MjgnJw5X0V783j6Z301ex9N89nT_MK5muSm4TDkva-EEkww41KVsGodo2f4fGlFLtNxCA0KB4aJ2INBJxSVVjPFhIxwy1ieDQ-8SV_oz-A8MO92i19NqpjtGC15IQfkW_r0mtDEG6_4CQHW3mQahD5uxb7h9XW0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using Stacking to Average Bayesian Predictive Distributions (with Discussion)</title><source>Project Euclid Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yao, Yuling ; Vehtari, Aki ; Simpson, Daniel ; Gelman, Andrew</creator><creatorcontrib>Yao, Yuling ; Vehtari, Aki ; Simpson, Daniel ; Gelman, Andrew</creatorcontrib><description>Bayesian model averaging is flawed in the M-open setting in which the true data-generating process is not one of the candidate models being fit. We take the idea of stacking from the point estimation literature and generalize to the combination of predictive distributions. We extend the utility function to any proper scoring rule and use Pareto smoothed importance sampling to efficiently compute the required leave-one-out posterior distributions. We compare stacking of predictive distributions to several alternatives: stacking of means, Bayesian model averaging (BMA), Pseudo-BMA, and a variant of Pseudo-BMA that is stabilized using the Bayesian bootstrap. Based on simulations and real-data applications, we recommend stacking of predictive distributions, with bootstrapped-Pseudo-BMA as an approximate alternative when computation cost is an issue.</description><identifier>ISSN: 1936-0975</identifier><identifier>EISSN: 1931-6690</identifier><identifier>DOI: 10.1214/17-BA1091</identifier><language>eng</language><publisher>International Society for Bayesian Analysis</publisher><subject>Computer Science ; Mathematics</subject><ispartof>Bayesian analysis, 2018-09, Vol.13 (3), p.917-1003</ispartof><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c268t-65b7f7383161b58ddfaae33834c7b8ae6e1d1791c67bf17af8968093364d7fa33</citedby><cites>FETCH-LOGICAL-c268t-65b7f7383161b58ddfaae33834c7b8ae6e1d1791c67bf17af8968093364d7fa33</cites><orcidid>0000-0002-7489-0179 ; 0000-0002-3551-4891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02628706$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Yao, Yuling</creatorcontrib><creatorcontrib>Vehtari, Aki</creatorcontrib><creatorcontrib>Simpson, Daniel</creatorcontrib><creatorcontrib>Gelman, Andrew</creatorcontrib><title>Using Stacking to Average Bayesian Predictive Distributions (with Discussion)</title><title>Bayesian analysis</title><description>Bayesian model averaging is flawed in the M-open setting in which the true data-generating process is not one of the candidate models being fit. We take the idea of stacking from the point estimation literature and generalize to the combination of predictive distributions. We extend the utility function to any proper scoring rule and use Pareto smoothed importance sampling to efficiently compute the required leave-one-out posterior distributions. We compare stacking of predictive distributions to several alternatives: stacking of means, Bayesian model averaging (BMA), Pseudo-BMA, and a variant of Pseudo-BMA that is stabilized using the Bayesian bootstrap. Based on simulations and real-data applications, we recommend stacking of predictive distributions, with bootstrapped-Pseudo-BMA as an approximate alternative when computation cost is an issue.</description><subject>Computer Science</subject><subject>Mathematics</subject><issn>1936-0975</issn><issn>1931-6690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkE9PAjEUxBujiYge_AZ7lMNq35btn-OCKCYYTZRz87bbQhVZ0xYM315WjJ7evF9m5jCEXAK9hgKGNyDyUQVUwRHpgWKQc67o8Y_mOVWiPCVnMb5RWpYCRI88zqNfL7KXhOa9E6nNqq0NuLDZCHc2elxnz8E23iS_tdmtjyn4epN8u47Z1ZdPy46ZTYx7MjgnJw5X0V783j6Z301ex9N89nT_MK5muSm4TDkva-EEkww41KVsGodo2f4fGlFLtNxCA0KB4aJ2INBJxSVVjPFhIxwy1ieDQ-8SV_oz-A8MO92i19NqpjtGC15IQfkW_r0mtDEG6_4CQHW3mQahD5uxb7h9XW0</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Yao, Yuling</creator><creator>Vehtari, Aki</creator><creator>Simpson, Daniel</creator><creator>Gelman, Andrew</creator><general>International Society for Bayesian Analysis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7489-0179</orcidid><orcidid>https://orcid.org/0000-0002-3551-4891</orcidid></search><sort><creationdate>20180901</creationdate><title>Using Stacking to Average Bayesian Predictive Distributions (with Discussion)</title><author>Yao, Yuling ; Vehtari, Aki ; Simpson, Daniel ; Gelman, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-65b7f7383161b58ddfaae33834c7b8ae6e1d1791c67bf17af8968093364d7fa33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer Science</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Yuling</creatorcontrib><creatorcontrib>Vehtari, Aki</creatorcontrib><creatorcontrib>Simpson, Daniel</creatorcontrib><creatorcontrib>Gelman, Andrew</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Bayesian analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Yuling</au><au>Vehtari, Aki</au><au>Simpson, Daniel</au><au>Gelman, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Stacking to Average Bayesian Predictive Distributions (with Discussion)</atitle><jtitle>Bayesian analysis</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>13</volume><issue>3</issue><spage>917</spage><epage>1003</epage><pages>917-1003</pages><issn>1936-0975</issn><eissn>1931-6690</eissn><abstract>Bayesian model averaging is flawed in the M-open setting in which the true data-generating process is not one of the candidate models being fit. We take the idea of stacking from the point estimation literature and generalize to the combination of predictive distributions. We extend the utility function to any proper scoring rule and use Pareto smoothed importance sampling to efficiently compute the required leave-one-out posterior distributions. We compare stacking of predictive distributions to several alternatives: stacking of means, Bayesian model averaging (BMA), Pseudo-BMA, and a variant of Pseudo-BMA that is stabilized using the Bayesian bootstrap. Based on simulations and real-data applications, we recommend stacking of predictive distributions, with bootstrapped-Pseudo-BMA as an approximate alternative when computation cost is an issue.</abstract><pub>International Society for Bayesian Analysis</pub><doi>10.1214/17-BA1091</doi><tpages>87</tpages><orcidid>https://orcid.org/0000-0002-7489-0179</orcidid><orcidid>https://orcid.org/0000-0002-3551-4891</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0975
ispartof Bayesian analysis, 2018-09, Vol.13 (3), p.917-1003
issn 1936-0975
1931-6690
language eng
recordid cdi_hal_primary_oai_HAL_hal_02628706v1
source Project Euclid Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Computer Science
Mathematics
title Using Stacking to Average Bayesian Predictive Distributions (with Discussion)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T05%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Stacking%20to%20Average%20Bayesian%20Predictive%20Distributions%20(with%20Discussion)&rft.jtitle=Bayesian%20analysis&rft.au=Yao,%20Yuling&rft.date=2018-09-01&rft.volume=13&rft.issue=3&rft.spage=917&rft.epage=1003&rft.pages=917-1003&rft.issn=1936-0975&rft.eissn=1931-6690&rft_id=info:doi/10.1214/17-BA1091&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02628706v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true