ΔTraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity

Improving our understanding of species ranges under rapid climate change requires application of our knowledge of the tolerance and adaptive capacity of populations to changing environmental conditions. Here, we describe an emerging modelling approach, ΔTraitSDM, which attempts to achieve this by ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2019-06, Vol.222 (4), p.1757-1765
Hauptverfasser: Garzón, Marta Benito, Robson, T. Matthew, Hampe, Arndt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1765
container_issue 4
container_start_page 1757
container_title The New phytologist
container_volume 222
creator Garzón, Marta Benito
Robson, T. Matthew
Hampe, Arndt
description Improving our understanding of species ranges under rapid climate change requires application of our knowledge of the tolerance and adaptive capacity of populations to changing environmental conditions. Here, we describe an emerging modelling approach, ΔTraitSDM, which attempts to achieve this by explaining species distribution ranges based on phenotypic plasticity and local adaptation of fitness-related traits measured across large geographical gradients. The collection of intraspecific trait data measured in common gardens spanning broad environmental clines has promoted the development of these new models – first in trees but now rapidly expanding to other organisms. We review, explain and harmonize the main findings from this new generation of models that, by including trait variation over geographical scales, are able to provide new insights into future species ranges. Overall, ΔTraitSDM predictions generally deliver a less alarming message than previous models of species distribution under new climates, indicating that phenotypic plasticity should help, to a considerable degree, some plant populations to persist under climate change. The development of ΔTraitSDMs offers a new perspective to analyse intraspecific variation in single and multiple traits, with the rationale that trait (co)variation and consequently fitness can significantly change across geographical gradients and new climates.
doi_str_mv 10.1111/nph.15716
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02627579v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26675930</jstor_id><sourcerecordid>26675930</sourcerecordid><originalsourceid>FETCH-LOGICAL-h3706-bd450979f4b96cb13a11ebed6cc458e9e52316426bd09a6fe621cdeb8d2c0a7a3</originalsourceid><addsrcrecordid>eNo9kM9OAkEMxidGI4gefAC9ePKw0M7MdnaOBFRM8E8iJt4mM7tDWAIs7oKG9_C5fCYHFumlTfv7mvZj7BKhjSE6i-WkjbFCOmJNlKSjBIU6Zk0AnkQk6aPBzqpqCgA6Jn7KGgJIKyV1k7V-f0alzVdv_afqnJ2M7azyF_vcYu_3d6PeIBq-PDz2usNoIhRQ5DIZg1Z6LJ2m1KGwiN75jNJUxonXPuYCSXJyGWhLY08c08y7JOMpWGVFi93Weyd2ZpZlPrflxhQ2N4Pu0Gx7wImrWOkvDOxNzS7L4nPtq5WZFutyEc4znHNEIZUWgbreU2s399lh6f-fAejUwHc-85vDHMFsDTTBQLMz0Dy_DnZFUFzVimm1KsqDghOpWAsQfz63aOU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221134793</pqid></control><display><type>article</type><title>ΔTraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity</title><source>MEDLINE</source><source>Wiley Online Library</source><source>JSTOR - Online Journals</source><source>Wiley Online Library Journals【Remote access available】</source><source>EZB Electronic Journals Library</source><creator>Garzón, Marta Benito ; Robson, T. Matthew ; Hampe, Arndt</creator><creatorcontrib>Garzón, Marta Benito ; Robson, T. Matthew ; Hampe, Arndt</creatorcontrib><description>Improving our understanding of species ranges under rapid climate change requires application of our knowledge of the tolerance and adaptive capacity of populations to changing environmental conditions. Here, we describe an emerging modelling approach, ΔTraitSDM, which attempts to achieve this by explaining species distribution ranges based on phenotypic plasticity and local adaptation of fitness-related traits measured across large geographical gradients. The collection of intraspecific trait data measured in common gardens spanning broad environmental clines has promoted the development of these new models – first in trees but now rapidly expanding to other organisms. We review, explain and harmonize the main findings from this new generation of models that, by including trait variation over geographical scales, are able to provide new insights into future species ranges. Overall, ΔTraitSDM predictions generally deliver a less alarming message than previous models of species distribution under new climates, indicating that phenotypic plasticity should help, to a considerable degree, some plant populations to persist under climate change. The development of ΔTraitSDMs offers a new perspective to analyse intraspecific variation in single and multiple traits, with the rationale that trait (co)variation and consequently fitness can significantly change across geographical gradients and new climates.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.15716</identifier><identifier>PMID: 30697749</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Adaptation ; Adaptation, Physiological ; Climate ; Climate change ; Clines ; common gardens ; Distribution ; Ecosystem ; Environmental changes ; Environmental conditions ; Fitness ; Gradients ; intraspecific variation ; Life Sciences ; local adaptation ; Models, Biological ; Phenotype ; Phenotypic plasticity ; Plant population ; Plant populations ; Plastic properties ; Plasticity ; Populations ; Quantitative Trait, Heritable ; Research review ; Species ; species ranges ; Species Specificity ; traits ; trees ; Variation</subject><ispartof>The New phytologist, 2019-06, Vol.222 (4), p.1757-1765</ispartof><rights>2019 The Authors © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust</rights><rights>2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</rights><rights>Copyright © 2019 New Phytologist Trust</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3436-123X ; 0000-0002-8631-796X ; 0000-0003-2551-9784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26675930$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26675930$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,1416,1432,27922,27923,45572,45573,46407,46831,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30697749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02627579$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Garzón, Marta Benito</creatorcontrib><creatorcontrib>Robson, T. Matthew</creatorcontrib><creatorcontrib>Hampe, Arndt</creatorcontrib><title>ΔTraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Improving our understanding of species ranges under rapid climate change requires application of our knowledge of the tolerance and adaptive capacity of populations to changing environmental conditions. Here, we describe an emerging modelling approach, ΔTraitSDM, which attempts to achieve this by explaining species distribution ranges based on phenotypic plasticity and local adaptation of fitness-related traits measured across large geographical gradients. The collection of intraspecific trait data measured in common gardens spanning broad environmental clines has promoted the development of these new models – first in trees but now rapidly expanding to other organisms. We review, explain and harmonize the main findings from this new generation of models that, by including trait variation over geographical scales, are able to provide new insights into future species ranges. Overall, ΔTraitSDM predictions generally deliver a less alarming message than previous models of species distribution under new climates, indicating that phenotypic plasticity should help, to a considerable degree, some plant populations to persist under climate change. The development of ΔTraitSDMs offers a new perspective to analyse intraspecific variation in single and multiple traits, with the rationale that trait (co)variation and consequently fitness can significantly change across geographical gradients and new climates.</description><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Climate</subject><subject>Climate change</subject><subject>Clines</subject><subject>common gardens</subject><subject>Distribution</subject><subject>Ecosystem</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>Fitness</subject><subject>Gradients</subject><subject>intraspecific variation</subject><subject>Life Sciences</subject><subject>local adaptation</subject><subject>Models, Biological</subject><subject>Phenotype</subject><subject>Phenotypic plasticity</subject><subject>Plant population</subject><subject>Plant populations</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Populations</subject><subject>Quantitative Trait, Heritable</subject><subject>Research review</subject><subject>Species</subject><subject>species ranges</subject><subject>Species Specificity</subject><subject>traits</subject><subject>trees</subject><subject>Variation</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kM9OAkEMxidGI4gefAC9ePKw0M7MdnaOBFRM8E8iJt4mM7tDWAIs7oKG9_C5fCYHFumlTfv7mvZj7BKhjSE6i-WkjbFCOmJNlKSjBIU6Zk0AnkQk6aPBzqpqCgA6Jn7KGgJIKyV1k7V-f0alzVdv_afqnJ2M7azyF_vcYu_3d6PeIBq-PDz2usNoIhRQ5DIZg1Z6LJ2m1KGwiN75jNJUxonXPuYCSXJyGWhLY08c08y7JOMpWGVFi93Weyd2ZpZlPrflxhQ2N4Pu0Gx7wImrWOkvDOxNzS7L4nPtq5WZFutyEc4znHNEIZUWgbreU2s399lh6f-fAejUwHc-85vDHMFsDTTBQLMz0Dy_DnZFUFzVimm1KsqDghOpWAsQfz63aOU</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Garzón, Marta Benito</creator><creator>Robson, T. Matthew</creator><creator>Hampe, Arndt</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3436-123X</orcidid><orcidid>https://orcid.org/0000-0002-8631-796X</orcidid><orcidid>https://orcid.org/0000-0003-2551-9784</orcidid></search><sort><creationdate>201906</creationdate><title>ΔTraitSDMs</title><author>Garzón, Marta Benito ; Robson, T. Matthew ; Hampe, Arndt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h3706-bd450979f4b96cb13a11ebed6cc458e9e52316426bd09a6fe621cdeb8d2c0a7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Climate</topic><topic>Climate change</topic><topic>Clines</topic><topic>common gardens</topic><topic>Distribution</topic><topic>Ecosystem</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>Fitness</topic><topic>Gradients</topic><topic>intraspecific variation</topic><topic>Life Sciences</topic><topic>local adaptation</topic><topic>Models, Biological</topic><topic>Phenotype</topic><topic>Phenotypic plasticity</topic><topic>Plant population</topic><topic>Plant populations</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Populations</topic><topic>Quantitative Trait, Heritable</topic><topic>Research review</topic><topic>Species</topic><topic>species ranges</topic><topic>Species Specificity</topic><topic>traits</topic><topic>trees</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garzón, Marta Benito</creatorcontrib><creatorcontrib>Robson, T. Matthew</creatorcontrib><creatorcontrib>Hampe, Arndt</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garzón, Marta Benito</au><au>Robson, T. Matthew</au><au>Hampe, Arndt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ΔTraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2019-06</date><risdate>2019</risdate><volume>222</volume><issue>4</issue><spage>1757</spage><epage>1765</epage><pages>1757-1765</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Improving our understanding of species ranges under rapid climate change requires application of our knowledge of the tolerance and adaptive capacity of populations to changing environmental conditions. Here, we describe an emerging modelling approach, ΔTraitSDM, which attempts to achieve this by explaining species distribution ranges based on phenotypic plasticity and local adaptation of fitness-related traits measured across large geographical gradients. The collection of intraspecific trait data measured in common gardens spanning broad environmental clines has promoted the development of these new models – first in trees but now rapidly expanding to other organisms. We review, explain and harmonize the main findings from this new generation of models that, by including trait variation over geographical scales, are able to provide new insights into future species ranges. Overall, ΔTraitSDM predictions generally deliver a less alarming message than previous models of species distribution under new climates, indicating that phenotypic plasticity should help, to a considerable degree, some plant populations to persist under climate change. The development of ΔTraitSDMs offers a new perspective to analyse intraspecific variation in single and multiple traits, with the rationale that trait (co)variation and consequently fitness can significantly change across geographical gradients and new climates.</abstract><cop>England</cop><pub>Wiley</pub><pmid>30697749</pmid><doi>10.1111/nph.15716</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3436-123X</orcidid><orcidid>https://orcid.org/0000-0002-8631-796X</orcidid><orcidid>https://orcid.org/0000-0003-2551-9784</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2019-06, Vol.222 (4), p.1757-1765
issn 0028-646X
1469-8137
language eng
recordid cdi_hal_primary_oai_HAL_hal_02627579v1
source MEDLINE; Wiley Online Library; JSTOR - Online Journals; Wiley Online Library Journals【Remote access available】; EZB Electronic Journals Library
subjects Adaptation
Adaptation, Physiological
Climate
Climate change
Clines
common gardens
Distribution
Ecosystem
Environmental changes
Environmental conditions
Fitness
Gradients
intraspecific variation
Life Sciences
local adaptation
Models, Biological
Phenotype
Phenotypic plasticity
Plant population
Plant populations
Plastic properties
Plasticity
Populations
Quantitative Trait, Heritable
Research review
Species
species ranges
Species Specificity
traits
trees
Variation
title ΔTraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%94TraitSDMs:%20species%20distribution%20models%20that%20account%20for%20local%20adaptation%20and%20phenotypic%20plasticity&rft.jtitle=The%20New%20phytologist&rft.au=Garz%C3%B3n,%20Marta%20Benito&rft.date=2019-06&rft.volume=222&rft.issue=4&rft.spage=1757&rft.epage=1765&rft.pages=1757-1765&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.15716&rft_dat=%3Cjstor_hal_p%3E26675930%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221134793&rft_id=info:pmid/30697749&rft_jstor_id=26675930&rfr_iscdi=true