On the correspondence between reciprocal relations and strongly complete fuzzy relations
Fuzzy relations and reciprocal relations are two popular tools for representing degrees of preference. It is important to note that they carry a different semantics and cannot be equated directly. We propose a simple transformation based on implication operators that allows to establish a one-to-one...
Gespeichert in:
Veröffentlicht in: | Fuzzy sets and systems 2017-09, Vol.322, p.19-34 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | |
container_start_page | 19 |
container_title | Fuzzy sets and systems |
container_volume | 322 |
creator | Martinetti, Davide Montes, Susana Díaz, Susana De Baets, Bernard |
description | Fuzzy relations and reciprocal relations are two popular tools for representing degrees of preference. It is important to note that they carry a different semantics and cannot be equated directly. We propose a simple transformation based on implication operators that allows to establish a one-to-one correspondence between both formalisms. It sets the basis for a common framework in which properties such as transitivity can be studied and definitions belonging to different formalisms can be compared. As a byproduct, we propose a new family of upper bound functions for cycle-transitivity. Finally, we unveil some interesting equivalences between types of transitivity that were left uncompared till now. |
doi_str_mv | 10.1016/j.fss.2017.03.004 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02627074v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165011417301069</els_id><sourcerecordid>oai_HAL_hal_02627074v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-d988053bb77fc12af2d80495c87c4254788a04e8957ec420d8e12cc5951032d53</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKcfwFuvHlpf0qZJ8TSGOmGwi4K3kCWvLqNrS1In26c3ZaI3T-_P4_978H6E3FLIKNDyfpvVIWQMqMggzwCKMzKhUrC0lEDPySR2eAqUFpfkKoQtQMwlTMj7qk2GDSam8x5D37UWW4PJGocvxDbxaFzvO6ObGBs9uK4NiW5tEgbftR_NIYK7vsEBk_rzeDz8ta7JRa2bgDc_c0renh5f54t0uXp-mc-WqclFMaS2khJ4vl4LURvKdM2shKLiRgpTMF4IKTUUKCsuMC7ASqTMGF5xCjmzPJ-Su9PdjW5U791O-4PqtFOL2VKNO2AlEyCKPY1deuoa34Xgsf4FKKhRo9qqqFGNGhXkKmqMzMOJwfjE3qFXwbjRkXVRzqBs5_6hvwETf3sY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the correspondence between reciprocal relations and strongly complete fuzzy relations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Martinetti, Davide ; Montes, Susana ; Díaz, Susana ; De Baets, Bernard</creator><creatorcontrib>Martinetti, Davide ; Montes, Susana ; Díaz, Susana ; De Baets, Bernard</creatorcontrib><description>Fuzzy relations and reciprocal relations are two popular tools for representing degrees of preference. It is important to note that they carry a different semantics and cannot be equated directly. We propose a simple transformation based on implication operators that allows to establish a one-to-one correspondence between both formalisms. It sets the basis for a common framework in which properties such as transitivity can be studied and definitions belonging to different formalisms can be compared. As a byproduct, we propose a new family of upper bound functions for cycle-transitivity. Finally, we unveil some interesting equivalences between types of transitivity that were left uncompared till now.</description><identifier>ISSN: 0165-0114</identifier><identifier>EISSN: 1872-6801</identifier><identifier>DOI: 10.1016/j.fss.2017.03.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bipolar/unipolar scale ; Cycle-transitivity ; Fuzzy relation ; Implication operator ; Mathematics ; Reciprocal relation ; Statistics</subject><ispartof>Fuzzy sets and systems, 2017-09, Vol.322, p.19-34</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-d988053bb77fc12af2d80495c87c4254788a04e8957ec420d8e12cc5951032d53</citedby><cites>FETCH-LOGICAL-c374t-d988053bb77fc12af2d80495c87c4254788a04e8957ec420d8e12cc5951032d53</cites><orcidid>0000-0002-4701-2207 ; 0000-0003-2047-1793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fss.2017.03.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02627074$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinetti, Davide</creatorcontrib><creatorcontrib>Montes, Susana</creatorcontrib><creatorcontrib>Díaz, Susana</creatorcontrib><creatorcontrib>De Baets, Bernard</creatorcontrib><title>On the correspondence between reciprocal relations and strongly complete fuzzy relations</title><title>Fuzzy sets and systems</title><description>Fuzzy relations and reciprocal relations are two popular tools for representing degrees of preference. It is important to note that they carry a different semantics and cannot be equated directly. We propose a simple transformation based on implication operators that allows to establish a one-to-one correspondence between both formalisms. It sets the basis for a common framework in which properties such as transitivity can be studied and definitions belonging to different formalisms can be compared. As a byproduct, we propose a new family of upper bound functions for cycle-transitivity. Finally, we unveil some interesting equivalences between types of transitivity that were left uncompared till now.</description><subject>Bipolar/unipolar scale</subject><subject>Cycle-transitivity</subject><subject>Fuzzy relation</subject><subject>Implication operator</subject><subject>Mathematics</subject><subject>Reciprocal relation</subject><subject>Statistics</subject><issn>0165-0114</issn><issn>1872-6801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKcfwFuvHlpf0qZJ8TSGOmGwi4K3kCWvLqNrS1In26c3ZaI3T-_P4_978H6E3FLIKNDyfpvVIWQMqMggzwCKMzKhUrC0lEDPySR2eAqUFpfkKoQtQMwlTMj7qk2GDSam8x5D37UWW4PJGocvxDbxaFzvO6ObGBs9uK4NiW5tEgbftR_NIYK7vsEBk_rzeDz8ta7JRa2bgDc_c0renh5f54t0uXp-mc-WqclFMaS2khJ4vl4LURvKdM2shKLiRgpTMF4IKTUUKCsuMC7ASqTMGF5xCjmzPJ-Su9PdjW5U791O-4PqtFOL2VKNO2AlEyCKPY1deuoa34Xgsf4FKKhRo9qqqFGNGhXkKmqMzMOJwfjE3qFXwbjRkXVRzqBs5_6hvwETf3sY</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Martinetti, Davide</creator><creator>Montes, Susana</creator><creator>Díaz, Susana</creator><creator>De Baets, Bernard</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4701-2207</orcidid><orcidid>https://orcid.org/0000-0003-2047-1793</orcidid></search><sort><creationdate>20170901</creationdate><title>On the correspondence between reciprocal relations and strongly complete fuzzy relations</title><author>Martinetti, Davide ; Montes, Susana ; Díaz, Susana ; De Baets, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-d988053bb77fc12af2d80495c87c4254788a04e8957ec420d8e12cc5951032d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bipolar/unipolar scale</topic><topic>Cycle-transitivity</topic><topic>Fuzzy relation</topic><topic>Implication operator</topic><topic>Mathematics</topic><topic>Reciprocal relation</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinetti, Davide</creatorcontrib><creatorcontrib>Montes, Susana</creatorcontrib><creatorcontrib>Díaz, Susana</creatorcontrib><creatorcontrib>De Baets, Bernard</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Fuzzy sets and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinetti, Davide</au><au>Montes, Susana</au><au>Díaz, Susana</au><au>De Baets, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the correspondence between reciprocal relations and strongly complete fuzzy relations</atitle><jtitle>Fuzzy sets and systems</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>322</volume><spage>19</spage><epage>34</epage><pages>19-34</pages><issn>0165-0114</issn><eissn>1872-6801</eissn><abstract>Fuzzy relations and reciprocal relations are two popular tools for representing degrees of preference. It is important to note that they carry a different semantics and cannot be equated directly. We propose a simple transformation based on implication operators that allows to establish a one-to-one correspondence between both formalisms. It sets the basis for a common framework in which properties such as transitivity can be studied and definitions belonging to different formalisms can be compared. As a byproduct, we propose a new family of upper bound functions for cycle-transitivity. Finally, we unveil some interesting equivalences between types of transitivity that were left uncompared till now.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.fss.2017.03.004</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4701-2207</orcidid><orcidid>https://orcid.org/0000-0003-2047-1793</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0114 |
ispartof | Fuzzy sets and systems, 2017-09, Vol.322, p.19-34 |
issn | 0165-0114 1872-6801 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02627074v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Bipolar/unipolar scale Cycle-transitivity Fuzzy relation Implication operator Mathematics Reciprocal relation Statistics |
title | On the correspondence between reciprocal relations and strongly complete fuzzy relations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20correspondence%20between%20reciprocal%20relations%20and%20strongly%20complete%20fuzzy%20relations&rft.jtitle=Fuzzy%20sets%20and%20systems&rft.au=Martinetti,%20Davide&rft.date=2017-09-01&rft.volume=322&rft.spage=19&rft.epage=34&rft.pages=19-34&rft.issn=0165-0114&rft.eissn=1872-6801&rft_id=info:doi/10.1016/j.fss.2017.03.004&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02627074v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0165011417301069&rfr_iscdi=true |