On the correspondence between reciprocal relations and strongly complete fuzzy relations

Fuzzy relations and reciprocal relations are two popular tools for representing degrees of preference. It is important to note that they carry a different semantics and cannot be equated directly. We propose a simple transformation based on implication operators that allows to establish a one-to-one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuzzy sets and systems 2017-09, Vol.322, p.19-34
Hauptverfasser: Martinetti, Davide, Montes, Susana, Díaz, Susana, De Baets, Bernard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue
container_start_page 19
container_title Fuzzy sets and systems
container_volume 322
creator Martinetti, Davide
Montes, Susana
Díaz, Susana
De Baets, Bernard
description Fuzzy relations and reciprocal relations are two popular tools for representing degrees of preference. It is important to note that they carry a different semantics and cannot be equated directly. We propose a simple transformation based on implication operators that allows to establish a one-to-one correspondence between both formalisms. It sets the basis for a common framework in which properties such as transitivity can be studied and definitions belonging to different formalisms can be compared. As a byproduct, we propose a new family of upper bound functions for cycle-transitivity. Finally, we unveil some interesting equivalences between types of transitivity that were left uncompared till now.
doi_str_mv 10.1016/j.fss.2017.03.004
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02627074v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165011417301069</els_id><sourcerecordid>oai_HAL_hal_02627074v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-d988053bb77fc12af2d80495c87c4254788a04e8957ec420d8e12cc5951032d53</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOKcfwFuvHlpf0qZJ8TSGOmGwi4K3kCWvLqNrS1In26c3ZaI3T-_P4_978H6E3FLIKNDyfpvVIWQMqMggzwCKMzKhUrC0lEDPySR2eAqUFpfkKoQtQMwlTMj7qk2GDSam8x5D37UWW4PJGocvxDbxaFzvO6ObGBs9uK4NiW5tEgbftR_NIYK7vsEBk_rzeDz8ta7JRa2bgDc_c0renh5f54t0uXp-mc-WqclFMaS2khJ4vl4LURvKdM2shKLiRgpTMF4IKTUUKCsuMC7ASqTMGF5xCjmzPJ-Su9PdjW5U791O-4PqtFOL2VKNO2AlEyCKPY1deuoa34Xgsf4FKKhRo9qqqFGNGhXkKmqMzMOJwfjE3qFXwbjRkXVRzqBs5_6hvwETf3sY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the correspondence between reciprocal relations and strongly complete fuzzy relations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Martinetti, Davide ; Montes, Susana ; Díaz, Susana ; De Baets, Bernard</creator><creatorcontrib>Martinetti, Davide ; Montes, Susana ; Díaz, Susana ; De Baets, Bernard</creatorcontrib><description>Fuzzy relations and reciprocal relations are two popular tools for representing degrees of preference. It is important to note that they carry a different semantics and cannot be equated directly. We propose a simple transformation based on implication operators that allows to establish a one-to-one correspondence between both formalisms. It sets the basis for a common framework in which properties such as transitivity can be studied and definitions belonging to different formalisms can be compared. As a byproduct, we propose a new family of upper bound functions for cycle-transitivity. Finally, we unveil some interesting equivalences between types of transitivity that were left uncompared till now.</description><identifier>ISSN: 0165-0114</identifier><identifier>EISSN: 1872-6801</identifier><identifier>DOI: 10.1016/j.fss.2017.03.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bipolar/unipolar scale ; Cycle-transitivity ; Fuzzy relation ; Implication operator ; Mathematics ; Reciprocal relation ; Statistics</subject><ispartof>Fuzzy sets and systems, 2017-09, Vol.322, p.19-34</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-d988053bb77fc12af2d80495c87c4254788a04e8957ec420d8e12cc5951032d53</citedby><cites>FETCH-LOGICAL-c374t-d988053bb77fc12af2d80495c87c4254788a04e8957ec420d8e12cc5951032d53</cites><orcidid>0000-0002-4701-2207 ; 0000-0003-2047-1793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fss.2017.03.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02627074$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinetti, Davide</creatorcontrib><creatorcontrib>Montes, Susana</creatorcontrib><creatorcontrib>Díaz, Susana</creatorcontrib><creatorcontrib>De Baets, Bernard</creatorcontrib><title>On the correspondence between reciprocal relations and strongly complete fuzzy relations</title><title>Fuzzy sets and systems</title><description>Fuzzy relations and reciprocal relations are two popular tools for representing degrees of preference. It is important to note that they carry a different semantics and cannot be equated directly. We propose a simple transformation based on implication operators that allows to establish a one-to-one correspondence between both formalisms. It sets the basis for a common framework in which properties such as transitivity can be studied and definitions belonging to different formalisms can be compared. As a byproduct, we propose a new family of upper bound functions for cycle-transitivity. Finally, we unveil some interesting equivalences between types of transitivity that were left uncompared till now.</description><subject>Bipolar/unipolar scale</subject><subject>Cycle-transitivity</subject><subject>Fuzzy relation</subject><subject>Implication operator</subject><subject>Mathematics</subject><subject>Reciprocal relation</subject><subject>Statistics</subject><issn>0165-0114</issn><issn>1872-6801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOKcfwFuvHlpf0qZJ8TSGOmGwi4K3kCWvLqNrS1In26c3ZaI3T-_P4_978H6E3FLIKNDyfpvVIWQMqMggzwCKMzKhUrC0lEDPySR2eAqUFpfkKoQtQMwlTMj7qk2GDSam8x5D37UWW4PJGocvxDbxaFzvO6ObGBs9uK4NiW5tEgbftR_NIYK7vsEBk_rzeDz8ta7JRa2bgDc_c0renh5f54t0uXp-mc-WqclFMaS2khJ4vl4LURvKdM2shKLiRgpTMF4IKTUUKCsuMC7ASqTMGF5xCjmzPJ-Su9PdjW5U791O-4PqtFOL2VKNO2AlEyCKPY1deuoa34Xgsf4FKKhRo9qqqFGNGhXkKmqMzMOJwfjE3qFXwbjRkXVRzqBs5_6hvwETf3sY</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Martinetti, Davide</creator><creator>Montes, Susana</creator><creator>Díaz, Susana</creator><creator>De Baets, Bernard</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4701-2207</orcidid><orcidid>https://orcid.org/0000-0003-2047-1793</orcidid></search><sort><creationdate>20170901</creationdate><title>On the correspondence between reciprocal relations and strongly complete fuzzy relations</title><author>Martinetti, Davide ; Montes, Susana ; Díaz, Susana ; De Baets, Bernard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-d988053bb77fc12af2d80495c87c4254788a04e8957ec420d8e12cc5951032d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bipolar/unipolar scale</topic><topic>Cycle-transitivity</topic><topic>Fuzzy relation</topic><topic>Implication operator</topic><topic>Mathematics</topic><topic>Reciprocal relation</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinetti, Davide</creatorcontrib><creatorcontrib>Montes, Susana</creatorcontrib><creatorcontrib>Díaz, Susana</creatorcontrib><creatorcontrib>De Baets, Bernard</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Fuzzy sets and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinetti, Davide</au><au>Montes, Susana</au><au>Díaz, Susana</au><au>De Baets, Bernard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the correspondence between reciprocal relations and strongly complete fuzzy relations</atitle><jtitle>Fuzzy sets and systems</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>322</volume><spage>19</spage><epage>34</epage><pages>19-34</pages><issn>0165-0114</issn><eissn>1872-6801</eissn><abstract>Fuzzy relations and reciprocal relations are two popular tools for representing degrees of preference. It is important to note that they carry a different semantics and cannot be equated directly. We propose a simple transformation based on implication operators that allows to establish a one-to-one correspondence between both formalisms. It sets the basis for a common framework in which properties such as transitivity can be studied and definitions belonging to different formalisms can be compared. As a byproduct, we propose a new family of upper bound functions for cycle-transitivity. Finally, we unveil some interesting equivalences between types of transitivity that were left uncompared till now.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.fss.2017.03.004</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4701-2207</orcidid><orcidid>https://orcid.org/0000-0003-2047-1793</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-0114
ispartof Fuzzy sets and systems, 2017-09, Vol.322, p.19-34
issn 0165-0114
1872-6801
language eng
recordid cdi_hal_primary_oai_HAL_hal_02627074v1
source ScienceDirect Journals (5 years ago - present)
subjects Bipolar/unipolar scale
Cycle-transitivity
Fuzzy relation
Implication operator
Mathematics
Reciprocal relation
Statistics
title On the correspondence between reciprocal relations and strongly complete fuzzy relations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20correspondence%20between%20reciprocal%20relations%20and%20strongly%20complete%20fuzzy%20relations&rft.jtitle=Fuzzy%20sets%20and%20systems&rft.au=Martinetti,%20Davide&rft.date=2017-09-01&rft.volume=322&rft.spage=19&rft.epage=34&rft.pages=19-34&rft.issn=0165-0114&rft.eissn=1872-6801&rft_id=info:doi/10.1016/j.fss.2017.03.004&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02627074v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0165011417301069&rfr_iscdi=true