Statistical treatment of free sorting data by means of correspondence and cluster analyses

•New strategies for the analysis of free sorting data are discussed.•Correspondence and cluster analyses are applied on the co-occurrence matrices.•The relationships among the stimuli on the one hand and among the subjects on the other hand are investigated.•The stimuli are partitioned into homogene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food quality and preference 2018-09, Vol.68, p.1-11
Hauptverfasser: Cariou, V., Qannari, E.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Food quality and preference
container_volume 68
creator Cariou, V.
Qannari, E.M.
description •New strategies for the analysis of free sorting data are discussed.•Correspondence and cluster analyses are applied on the co-occurrence matrices.•The relationships among the stimuli on the one hand and among the subjects on the other hand are investigated.•The stimuli are partitioned into homogeneous clusters.•The subjects are segmented into homogeneous groups.•The different methods of analyses complement each other and present a global coherence. Several statistical procedures have been proposed for the analysis of the data from a free sorting task. A straightforward strategy of analysis based on correspondence analysis and cluster analysis performed on the co-occurrence matrix is proposed herein. More specifically, two situations are considered depending on whether the aim is to depict the relationships among the stimuli or to investigate the agreement among the subjects. The approach of analysis is illustrated on the basis of free sorting data characterizing chocolate products.
doi_str_mv 10.1016/j.foodqual.2018.01.011
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02626160v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950329318300600</els_id><sourcerecordid>oai_HAL_hal_02626160v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-cf23de962b7d025eef69c9f3fbd7e68b3b981b35052322388f20a560ee368e453</originalsourceid><addsrcrecordid>eNqFUMFKAzEUDKJgrf6C5Oph60vSTXdvlqJWKHhQL15CNnnRlO2mJmmhf-8uVa_CwHu8NzMwQ8g1gwkDJm_XExeC_drpdsKBVRNgPdgJGbFqJgoppuKUjKAuoRC8FufkIqU1AJsB4yPy_pJ19il7o1uaI-q8wS7T4KiLiDSFmH33Qa3OmjYHukHdpeFrQoyYtqGz2BmkurPUtLuUMfa7bg8J0yU5c7pNePUzx-Tt4f51sSxWz49Pi_mqMKISuTCOC4u15M3MAi8RnaxN7YRr7Axl1YimrlgjSii54FxUleOgSwmIQlY4LcWY3Bx9P3WrttFvdDyooL1azldquAGXXDIJe9Zz5ZFrYkgpovsTMFBDm2qtfttUQ5sKWI9BeHcUYp9k7zGqZPwQ3fqIJisb_H8W37WSgiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical treatment of free sorting data by means of correspondence and cluster analyses</title><source>Elsevier ScienceDirect Journals</source><creator>Cariou, V. ; Qannari, E.M.</creator><creatorcontrib>Cariou, V. ; Qannari, E.M.</creatorcontrib><description>•New strategies for the analysis of free sorting data are discussed.•Correspondence and cluster analyses are applied on the co-occurrence matrices.•The relationships among the stimuli on the one hand and among the subjects on the other hand are investigated.•The stimuli are partitioned into homogeneous clusters.•The subjects are segmented into homogeneous groups.•The different methods of analyses complement each other and present a global coherence. Several statistical procedures have been proposed for the analysis of the data from a free sorting task. A straightforward strategy of analysis based on correspondence analysis and cluster analysis performed on the co-occurrence matrix is proposed herein. More specifically, two situations are considered depending on whether the aim is to depict the relationships among the stimuli or to investigate the agreement among the subjects. The approach of analysis is illustrated on the basis of free sorting data characterizing chocolate products.</description><identifier>ISSN: 0950-3293</identifier><identifier>EISSN: 1873-6343</identifier><identifier>DOI: 10.1016/j.foodqual.2018.01.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical and Process Engineering ; Cluster analysis ; Co-occurrence matrix ; Correspondence analysis ; Engineering Sciences ; Food engineering ; Free sorting ; Life Sciences</subject><ispartof>Food quality and preference, 2018-09, Vol.68, p.1-11</ispartof><rights>2018 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-cf23de962b7d025eef69c9f3fbd7e68b3b981b35052322388f20a560ee368e453</citedby><cites>FETCH-LOGICAL-c383t-cf23de962b7d025eef69c9f3fbd7e68b3b981b35052322388f20a560ee368e453</cites><orcidid>0000-0003-4091-5910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950329318300600$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02626160$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cariou, V.</creatorcontrib><creatorcontrib>Qannari, E.M.</creatorcontrib><title>Statistical treatment of free sorting data by means of correspondence and cluster analyses</title><title>Food quality and preference</title><description>•New strategies for the analysis of free sorting data are discussed.•Correspondence and cluster analyses are applied on the co-occurrence matrices.•The relationships among the stimuli on the one hand and among the subjects on the other hand are investigated.•The stimuli are partitioned into homogeneous clusters.•The subjects are segmented into homogeneous groups.•The different methods of analyses complement each other and present a global coherence. Several statistical procedures have been proposed for the analysis of the data from a free sorting task. A straightforward strategy of analysis based on correspondence analysis and cluster analysis performed on the co-occurrence matrix is proposed herein. More specifically, two situations are considered depending on whether the aim is to depict the relationships among the stimuli or to investigate the agreement among the subjects. The approach of analysis is illustrated on the basis of free sorting data characterizing chocolate products.</description><subject>Chemical and Process Engineering</subject><subject>Cluster analysis</subject><subject>Co-occurrence matrix</subject><subject>Correspondence analysis</subject><subject>Engineering Sciences</subject><subject>Food engineering</subject><subject>Free sorting</subject><subject>Life Sciences</subject><issn>0950-3293</issn><issn>1873-6343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUMFKAzEUDKJgrf6C5Oph60vSTXdvlqJWKHhQL15CNnnRlO2mJmmhf-8uVa_CwHu8NzMwQ8g1gwkDJm_XExeC_drpdsKBVRNgPdgJGbFqJgoppuKUjKAuoRC8FufkIqU1AJsB4yPy_pJ19il7o1uaI-q8wS7T4KiLiDSFmH33Qa3OmjYHukHdpeFrQoyYtqGz2BmkurPUtLuUMfa7bg8J0yU5c7pNePUzx-Tt4f51sSxWz49Pi_mqMKISuTCOC4u15M3MAi8RnaxN7YRr7Axl1YimrlgjSii54FxUleOgSwmIQlY4LcWY3Bx9P3WrttFvdDyooL1azldquAGXXDIJe9Zz5ZFrYkgpovsTMFBDm2qtfttUQ5sKWI9BeHcUYp9k7zGqZPwQ3fqIJisb_H8W37WSgiA</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Cariou, V.</creator><creator>Qannari, E.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4091-5910</orcidid></search><sort><creationdate>20180901</creationdate><title>Statistical treatment of free sorting data by means of correspondence and cluster analyses</title><author>Cariou, V. ; Qannari, E.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-cf23de962b7d025eef69c9f3fbd7e68b3b981b35052322388f20a560ee368e453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical and Process Engineering</topic><topic>Cluster analysis</topic><topic>Co-occurrence matrix</topic><topic>Correspondence analysis</topic><topic>Engineering Sciences</topic><topic>Food engineering</topic><topic>Free sorting</topic><topic>Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cariou, V.</creatorcontrib><creatorcontrib>Qannari, E.M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Food quality and preference</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cariou, V.</au><au>Qannari, E.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical treatment of free sorting data by means of correspondence and cluster analyses</atitle><jtitle>Food quality and preference</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>68</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0950-3293</issn><eissn>1873-6343</eissn><abstract>•New strategies for the analysis of free sorting data are discussed.•Correspondence and cluster analyses are applied on the co-occurrence matrices.•The relationships among the stimuli on the one hand and among the subjects on the other hand are investigated.•The stimuli are partitioned into homogeneous clusters.•The subjects are segmented into homogeneous groups.•The different methods of analyses complement each other and present a global coherence. Several statistical procedures have been proposed for the analysis of the data from a free sorting task. A straightforward strategy of analysis based on correspondence analysis and cluster analysis performed on the co-occurrence matrix is proposed herein. More specifically, two situations are considered depending on whether the aim is to depict the relationships among the stimuli or to investigate the agreement among the subjects. The approach of analysis is illustrated on the basis of free sorting data characterizing chocolate products.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.foodqual.2018.01.011</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4091-5910</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-3293
ispartof Food quality and preference, 2018-09, Vol.68, p.1-11
issn 0950-3293
1873-6343
language eng
recordid cdi_hal_primary_oai_HAL_hal_02626160v1
source Elsevier ScienceDirect Journals
subjects Chemical and Process Engineering
Cluster analysis
Co-occurrence matrix
Correspondence analysis
Engineering Sciences
Food engineering
Free sorting
Life Sciences
title Statistical treatment of free sorting data by means of correspondence and cluster analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20treatment%20of%20free%20sorting%20data%20by%20means%20of%20correspondence%20and%20cluster%20analyses&rft.jtitle=Food%20quality%20and%20preference&rft.au=Cariou,%20V.&rft.date=2018-09-01&rft.volume=68&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0950-3293&rft.eissn=1873-6343&rft_id=info:doi/10.1016/j.foodqual.2018.01.011&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02626160v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0950329318300600&rfr_iscdi=true