Diversity of Toxoplasma gondii strains shaped by commensal communities of small mammals
[Display omitted] •The modified agglutination test (MAT) should not be used for Toxoplasma gondii detection in wild Mus musculus domesticus.•Prevalence of T. gondii infection varies significantly between species.•Both transcontinental and African lineages of T. gondii are found in Senegal.•The Afric...
Gespeichert in:
Veröffentlicht in: | International journal for parasitology 2019-03, Vol.49 (3-4), p.267-275 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | 3-4 |
container_start_page | 267 |
container_title | International journal for parasitology |
container_volume | 49 |
creator | Galal, Lokman Schares, Gereon Stragier, Claire Vignoles, Philippe Brouat, Carine Cuny, Thomas Dubois, Camille Rohart, Thao Glodas, Clément Dardé, Marie-Laure Kane, Mamadou Niang, Youssoupha Diallo, Mamoudou Sow, Aliou Aubert, Dominique Hamidović, Azra Ajzenberg, Daniel Mercier, Aurélien |
description | [Display omitted]
•The modified agglutination test (MAT) should not be used for Toxoplasma gondii detection in wild Mus musculus domesticus.•Prevalence of T. gondii infection varies significantly between species.•Both transcontinental and African lineages of T. gondii are found in Senegal.•The African T. gondii lineage Africa 1 was only found in native African small mammals.
Commensal rodent species are key reservoirs for Toxoplasma gondii in the domestic environment. In rodents, different T. gondii strains show variable patterns of virulence according to host species. Toxoplasma gondii strains causing non-lethal chronic infections in local hosts will be more likely to persist in a given environment, but few studies have addressed the possible role of these interactions in shaping the T. gondii population structure. In addition, the absence of validated techniques for upstream detection of T. gondii chronic infection in wild rodents hinders exploration of this issue under natural conditions. In this study, we took advantage of an extensive survey of commensal small mammals in three coastal localities of Senegal, with a species assemblage constituted of both native African species and invasive species. We tested 828 individuals for T. gondii chronic infection using the modified agglutination test for antibody detection in serum samples and a quantitative PCR assay for detection of T. gondii DNA in brain samples. The infecting T. gondii strains were genotyped whenever possible by the analysis of 15 microsatellite markers. We found (i) a very poor concordance between molecular detection and serology in the invasive house mouse, (ii) significantly different levels of prevalence by species and (iii) the autochthonous T. gondii Africa 1 lineage strains, which are lethal for laboratory mice, only in the native African species of commensal small mammals. Overall, this study highlights the need to reconsider the use of MAT serology in natural populations of house mice and provides the first known data about T. gondii genetic diversity in invasive and native species of small mammals from Africa. In light of these results, we discuss the role of invasive and native species, with their variable adaptations to different T. gondii strains, in shaping the spatial structure of T. gondii genetic diversity in Africa. |
doi_str_mv | 10.1016/j.ijpara.2018.11.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02624520v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020751918303205</els_id><sourcerecordid>2159986426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-ffb9fe8707d6e21c44ec23c21130dabd4a01d25c6dae381ca045157bbd0947363</originalsourceid><addsrcrecordid>eNp9kE1r3DAURUVpaSZJ_0EpXjYLu-_Jkj82gTBpmsJANylZCll6bjTYliN5hs6_r12nWXZ1hTj3PjiMfUTIELD4ss_cftRBZxywyhAzAPGGbbAq6xQwl2_ZBoBDWkqsz9h5jHsAlLkQ79lZDrKsKuQb9njrjhSim06Jb5MH_9uPnY69Tn75wTqXxCloN8QkPumRbNKcEuP7noaou7-vw-AmR3Epz62uS3rdzxkv2bt2Dvrwkhfs593Xh-19uvvx7fv2ZpcaCdWUtm1Tt1SVUNqCOBohyPDccMQcrG6s0ICWS1NYTXmFRoOQKMumsVCLMi_yC3a17j7pTo3B9TqclNdO3d_s1PIHvOBCcjjizH5e2TH45wPFSfUuGuo6PZA_RMVR1nVVCL7MihU1wccYqH3dRlCLfrVXq3616FeIatY_1z69XDg0PdnX0j_fM3C9AjQ7OToKKhpHgyHrAplJWe_-f-EPYimYJg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159986426</pqid></control><display><type>article</type><title>Diversity of Toxoplasma gondii strains shaped by commensal communities of small mammals</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Galal, Lokman ; Schares, Gereon ; Stragier, Claire ; Vignoles, Philippe ; Brouat, Carine ; Cuny, Thomas ; Dubois, Camille ; Rohart, Thao ; Glodas, Clément ; Dardé, Marie-Laure ; Kane, Mamadou ; Niang, Youssoupha ; Diallo, Mamoudou ; Sow, Aliou ; Aubert, Dominique ; Hamidović, Azra ; Ajzenberg, Daniel ; Mercier, Aurélien</creator><creatorcontrib>Galal, Lokman ; Schares, Gereon ; Stragier, Claire ; Vignoles, Philippe ; Brouat, Carine ; Cuny, Thomas ; Dubois, Camille ; Rohart, Thao ; Glodas, Clément ; Dardé, Marie-Laure ; Kane, Mamadou ; Niang, Youssoupha ; Diallo, Mamoudou ; Sow, Aliou ; Aubert, Dominique ; Hamidović, Azra ; Ajzenberg, Daniel ; Mercier, Aurélien</creatorcontrib><description>[Display omitted]
•The modified agglutination test (MAT) should not be used for Toxoplasma gondii detection in wild Mus musculus domesticus.•Prevalence of T. gondii infection varies significantly between species.•Both transcontinental and African lineages of T. gondii are found in Senegal.•The African T. gondii lineage Africa 1 was only found in native African small mammals.
Commensal rodent species are key reservoirs for Toxoplasma gondii in the domestic environment. In rodents, different T. gondii strains show variable patterns of virulence according to host species. Toxoplasma gondii strains causing non-lethal chronic infections in local hosts will be more likely to persist in a given environment, but few studies have addressed the possible role of these interactions in shaping the T. gondii population structure. In addition, the absence of validated techniques for upstream detection of T. gondii chronic infection in wild rodents hinders exploration of this issue under natural conditions. In this study, we took advantage of an extensive survey of commensal small mammals in three coastal localities of Senegal, with a species assemblage constituted of both native African species and invasive species. We tested 828 individuals for T. gondii chronic infection using the modified agglutination test for antibody detection in serum samples and a quantitative PCR assay for detection of T. gondii DNA in brain samples. The infecting T. gondii strains were genotyped whenever possible by the analysis of 15 microsatellite markers. We found (i) a very poor concordance between molecular detection and serology in the invasive house mouse, (ii) significantly different levels of prevalence by species and (iii) the autochthonous T. gondii Africa 1 lineage strains, which are lethal for laboratory mice, only in the native African species of commensal small mammals. Overall, this study highlights the need to reconsider the use of MAT serology in natural populations of house mice and provides the first known data about T. gondii genetic diversity in invasive and native species of small mammals from Africa. In light of these results, we discuss the role of invasive and native species, with their variable adaptations to different T. gondii strains, in shaping the spatial structure of T. gondii genetic diversity in Africa.</description><identifier>ISSN: 0020-7519</identifier><identifier>EISSN: 1879-0135</identifier><identifier>DOI: 10.1016/j.ijpara.2018.11.004</identifier><identifier>PMID: 30578812</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Biota ; Genetic diversity ; Genetic Variation ; Genotype ; Genotyping Techniques ; Hammondia ; Life Sciences ; Microsatellite Repeats ; Neospora caninum ; Prevalence ; Rodent Diseases - parasitology ; Rodentia ; Rodents ; Santé publique et épidémiologie ; Senegal ; Toxoplasma - classification ; Toxoplasma - genetics ; Toxoplasma - isolation & purification ; Toxoplasma gondii ; Toxoplasmosis, Animal - epidemiology ; Toxoplasmosis, Animal - parasitology ; West Africa</subject><ispartof>International journal for parasitology, 2019-03, Vol.49 (3-4), p.267-275</ispartof><rights>2018 Australian Society for Parasitology</rights><rights>Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-ffb9fe8707d6e21c44ec23c21130dabd4a01d25c6dae381ca045157bbd0947363</citedby><cites>FETCH-LOGICAL-c508t-ffb9fe8707d6e21c44ec23c21130dabd4a01d25c6dae381ca045157bbd0947363</cites><orcidid>0000-0002-3217-289X ; 0000-0002-9808-4569 ; 0000-0002-2921-3849 ; 0000-0003-4332-5879 ; 0000-0001-6167-308X ; 0000-0002-5357-3318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijpara.2018.11.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30578812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02624520$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Galal, Lokman</creatorcontrib><creatorcontrib>Schares, Gereon</creatorcontrib><creatorcontrib>Stragier, Claire</creatorcontrib><creatorcontrib>Vignoles, Philippe</creatorcontrib><creatorcontrib>Brouat, Carine</creatorcontrib><creatorcontrib>Cuny, Thomas</creatorcontrib><creatorcontrib>Dubois, Camille</creatorcontrib><creatorcontrib>Rohart, Thao</creatorcontrib><creatorcontrib>Glodas, Clément</creatorcontrib><creatorcontrib>Dardé, Marie-Laure</creatorcontrib><creatorcontrib>Kane, Mamadou</creatorcontrib><creatorcontrib>Niang, Youssoupha</creatorcontrib><creatorcontrib>Diallo, Mamoudou</creatorcontrib><creatorcontrib>Sow, Aliou</creatorcontrib><creatorcontrib>Aubert, Dominique</creatorcontrib><creatorcontrib>Hamidović, Azra</creatorcontrib><creatorcontrib>Ajzenberg, Daniel</creatorcontrib><creatorcontrib>Mercier, Aurélien</creatorcontrib><title>Diversity of Toxoplasma gondii strains shaped by commensal communities of small mammals</title><title>International journal for parasitology</title><addtitle>Int J Parasitol</addtitle><description>[Display omitted]
•The modified agglutination test (MAT) should not be used for Toxoplasma gondii detection in wild Mus musculus domesticus.•Prevalence of T. gondii infection varies significantly between species.•Both transcontinental and African lineages of T. gondii are found in Senegal.•The African T. gondii lineage Africa 1 was only found in native African small mammals.
Commensal rodent species are key reservoirs for Toxoplasma gondii in the domestic environment. In rodents, different T. gondii strains show variable patterns of virulence according to host species. Toxoplasma gondii strains causing non-lethal chronic infections in local hosts will be more likely to persist in a given environment, but few studies have addressed the possible role of these interactions in shaping the T. gondii population structure. In addition, the absence of validated techniques for upstream detection of T. gondii chronic infection in wild rodents hinders exploration of this issue under natural conditions. In this study, we took advantage of an extensive survey of commensal small mammals in three coastal localities of Senegal, with a species assemblage constituted of both native African species and invasive species. We tested 828 individuals for T. gondii chronic infection using the modified agglutination test for antibody detection in serum samples and a quantitative PCR assay for detection of T. gondii DNA in brain samples. The infecting T. gondii strains were genotyped whenever possible by the analysis of 15 microsatellite markers. We found (i) a very poor concordance between molecular detection and serology in the invasive house mouse, (ii) significantly different levels of prevalence by species and (iii) the autochthonous T. gondii Africa 1 lineage strains, which are lethal for laboratory mice, only in the native African species of commensal small mammals. Overall, this study highlights the need to reconsider the use of MAT serology in natural populations of house mice and provides the first known data about T. gondii genetic diversity in invasive and native species of small mammals from Africa. In light of these results, we discuss the role of invasive and native species, with their variable adaptations to different T. gondii strains, in shaping the spatial structure of T. gondii genetic diversity in Africa.</description><subject>Animals</subject><subject>Biota</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Genotype</subject><subject>Genotyping Techniques</subject><subject>Hammondia</subject><subject>Life Sciences</subject><subject>Microsatellite Repeats</subject><subject>Neospora caninum</subject><subject>Prevalence</subject><subject>Rodent Diseases - parasitology</subject><subject>Rodentia</subject><subject>Rodents</subject><subject>Santé publique et épidémiologie</subject><subject>Senegal</subject><subject>Toxoplasma - classification</subject><subject>Toxoplasma - genetics</subject><subject>Toxoplasma - isolation & purification</subject><subject>Toxoplasma gondii</subject><subject>Toxoplasmosis, Animal - epidemiology</subject><subject>Toxoplasmosis, Animal - parasitology</subject><subject>West Africa</subject><issn>0020-7519</issn><issn>1879-0135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAURUVpaSZJ_0EpXjYLu-_Jkj82gTBpmsJANylZCll6bjTYliN5hs6_r12nWXZ1hTj3PjiMfUTIELD4ss_cftRBZxywyhAzAPGGbbAq6xQwl2_ZBoBDWkqsz9h5jHsAlLkQ79lZDrKsKuQb9njrjhSim06Jb5MH_9uPnY69Tn75wTqXxCloN8QkPumRbNKcEuP7noaou7-vw-AmR3Epz62uS3rdzxkv2bt2Dvrwkhfs593Xh-19uvvx7fv2ZpcaCdWUtm1Tt1SVUNqCOBohyPDccMQcrG6s0ICWS1NYTXmFRoOQKMumsVCLMi_yC3a17j7pTo3B9TqclNdO3d_s1PIHvOBCcjjizH5e2TH45wPFSfUuGuo6PZA_RMVR1nVVCL7MihU1wccYqH3dRlCLfrVXq3616FeIatY_1z69XDg0PdnX0j_fM3C9AjQ7OToKKhpHgyHrAplJWe_-f-EPYimYJg</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Galal, Lokman</creator><creator>Schares, Gereon</creator><creator>Stragier, Claire</creator><creator>Vignoles, Philippe</creator><creator>Brouat, Carine</creator><creator>Cuny, Thomas</creator><creator>Dubois, Camille</creator><creator>Rohart, Thao</creator><creator>Glodas, Clément</creator><creator>Dardé, Marie-Laure</creator><creator>Kane, Mamadou</creator><creator>Niang, Youssoupha</creator><creator>Diallo, Mamoudou</creator><creator>Sow, Aliou</creator><creator>Aubert, Dominique</creator><creator>Hamidović, Azra</creator><creator>Ajzenberg, Daniel</creator><creator>Mercier, Aurélien</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3217-289X</orcidid><orcidid>https://orcid.org/0000-0002-9808-4569</orcidid><orcidid>https://orcid.org/0000-0002-2921-3849</orcidid><orcidid>https://orcid.org/0000-0003-4332-5879</orcidid><orcidid>https://orcid.org/0000-0001-6167-308X</orcidid><orcidid>https://orcid.org/0000-0002-5357-3318</orcidid></search><sort><creationdate>20190301</creationdate><title>Diversity of Toxoplasma gondii strains shaped by commensal communities of small mammals</title><author>Galal, Lokman ; Schares, Gereon ; Stragier, Claire ; Vignoles, Philippe ; Brouat, Carine ; Cuny, Thomas ; Dubois, Camille ; Rohart, Thao ; Glodas, Clément ; Dardé, Marie-Laure ; Kane, Mamadou ; Niang, Youssoupha ; Diallo, Mamoudou ; Sow, Aliou ; Aubert, Dominique ; Hamidović, Azra ; Ajzenberg, Daniel ; Mercier, Aurélien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-ffb9fe8707d6e21c44ec23c21130dabd4a01d25c6dae381ca045157bbd0947363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Biota</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Genotype</topic><topic>Genotyping Techniques</topic><topic>Hammondia</topic><topic>Life Sciences</topic><topic>Microsatellite Repeats</topic><topic>Neospora caninum</topic><topic>Prevalence</topic><topic>Rodent Diseases - parasitology</topic><topic>Rodentia</topic><topic>Rodents</topic><topic>Santé publique et épidémiologie</topic><topic>Senegal</topic><topic>Toxoplasma - classification</topic><topic>Toxoplasma - genetics</topic><topic>Toxoplasma - isolation & purification</topic><topic>Toxoplasma gondii</topic><topic>Toxoplasmosis, Animal - epidemiology</topic><topic>Toxoplasmosis, Animal - parasitology</topic><topic>West Africa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galal, Lokman</creatorcontrib><creatorcontrib>Schares, Gereon</creatorcontrib><creatorcontrib>Stragier, Claire</creatorcontrib><creatorcontrib>Vignoles, Philippe</creatorcontrib><creatorcontrib>Brouat, Carine</creatorcontrib><creatorcontrib>Cuny, Thomas</creatorcontrib><creatorcontrib>Dubois, Camille</creatorcontrib><creatorcontrib>Rohart, Thao</creatorcontrib><creatorcontrib>Glodas, Clément</creatorcontrib><creatorcontrib>Dardé, Marie-Laure</creatorcontrib><creatorcontrib>Kane, Mamadou</creatorcontrib><creatorcontrib>Niang, Youssoupha</creatorcontrib><creatorcontrib>Diallo, Mamoudou</creatorcontrib><creatorcontrib>Sow, Aliou</creatorcontrib><creatorcontrib>Aubert, Dominique</creatorcontrib><creatorcontrib>Hamidović, Azra</creatorcontrib><creatorcontrib>Ajzenberg, Daniel</creatorcontrib><creatorcontrib>Mercier, Aurélien</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal for parasitology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galal, Lokman</au><au>Schares, Gereon</au><au>Stragier, Claire</au><au>Vignoles, Philippe</au><au>Brouat, Carine</au><au>Cuny, Thomas</au><au>Dubois, Camille</au><au>Rohart, Thao</au><au>Glodas, Clément</au><au>Dardé, Marie-Laure</au><au>Kane, Mamadou</au><au>Niang, Youssoupha</au><au>Diallo, Mamoudou</au><au>Sow, Aliou</au><au>Aubert, Dominique</au><au>Hamidović, Azra</au><au>Ajzenberg, Daniel</au><au>Mercier, Aurélien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diversity of Toxoplasma gondii strains shaped by commensal communities of small mammals</atitle><jtitle>International journal for parasitology</jtitle><addtitle>Int J Parasitol</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>49</volume><issue>3-4</issue><spage>267</spage><epage>275</epage><pages>267-275</pages><issn>0020-7519</issn><eissn>1879-0135</eissn><abstract>[Display omitted]
•The modified agglutination test (MAT) should not be used for Toxoplasma gondii detection in wild Mus musculus domesticus.•Prevalence of T. gondii infection varies significantly between species.•Both transcontinental and African lineages of T. gondii are found in Senegal.•The African T. gondii lineage Africa 1 was only found in native African small mammals.
Commensal rodent species are key reservoirs for Toxoplasma gondii in the domestic environment. In rodents, different T. gondii strains show variable patterns of virulence according to host species. Toxoplasma gondii strains causing non-lethal chronic infections in local hosts will be more likely to persist in a given environment, but few studies have addressed the possible role of these interactions in shaping the T. gondii population structure. In addition, the absence of validated techniques for upstream detection of T. gondii chronic infection in wild rodents hinders exploration of this issue under natural conditions. In this study, we took advantage of an extensive survey of commensal small mammals in three coastal localities of Senegal, with a species assemblage constituted of both native African species and invasive species. We tested 828 individuals for T. gondii chronic infection using the modified agglutination test for antibody detection in serum samples and a quantitative PCR assay for detection of T. gondii DNA in brain samples. The infecting T. gondii strains were genotyped whenever possible by the analysis of 15 microsatellite markers. We found (i) a very poor concordance between molecular detection and serology in the invasive house mouse, (ii) significantly different levels of prevalence by species and (iii) the autochthonous T. gondii Africa 1 lineage strains, which are lethal for laboratory mice, only in the native African species of commensal small mammals. Overall, this study highlights the need to reconsider the use of MAT serology in natural populations of house mice and provides the first known data about T. gondii genetic diversity in invasive and native species of small mammals from Africa. In light of these results, we discuss the role of invasive and native species, with their variable adaptations to different T. gondii strains, in shaping the spatial structure of T. gondii genetic diversity in Africa.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30578812</pmid><doi>10.1016/j.ijpara.2018.11.004</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3217-289X</orcidid><orcidid>https://orcid.org/0000-0002-9808-4569</orcidid><orcidid>https://orcid.org/0000-0002-2921-3849</orcidid><orcidid>https://orcid.org/0000-0003-4332-5879</orcidid><orcidid>https://orcid.org/0000-0001-6167-308X</orcidid><orcidid>https://orcid.org/0000-0002-5357-3318</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7519 |
ispartof | International journal for parasitology, 2019-03, Vol.49 (3-4), p.267-275 |
issn | 0020-7519 1879-0135 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02624520v1 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Animals Biota Genetic diversity Genetic Variation Genotype Genotyping Techniques Hammondia Life Sciences Microsatellite Repeats Neospora caninum Prevalence Rodent Diseases - parasitology Rodentia Rodents Santé publique et épidémiologie Senegal Toxoplasma - classification Toxoplasma - genetics Toxoplasma - isolation & purification Toxoplasma gondii Toxoplasmosis, Animal - epidemiology Toxoplasmosis, Animal - parasitology West Africa |
title | Diversity of Toxoplasma gondii strains shaped by commensal communities of small mammals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diversity%20of%20Toxoplasma%20gondii%20strains%20shaped%20by%20commensal%20communities%20of%20small%20mammals&rft.jtitle=International%20journal%20for%20parasitology&rft.au=Galal,%20Lokman&rft.date=2019-03-01&rft.volume=49&rft.issue=3-4&rft.spage=267&rft.epage=275&rft.pages=267-275&rft.issn=0020-7519&rft.eissn=1879-0135&rft_id=info:doi/10.1016/j.ijpara.2018.11.004&rft_dat=%3Cproquest_hal_p%3E2159986426%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159986426&rft_id=info:pmid/30578812&rft_els_id=S0020751918303205&rfr_iscdi=true |