Stochastic Rainfall Modeling at Sub‐kilometer Scale
New measurement devices allow observing rainfall with unprecedented resolution. Such observations often reveal new features of rainfall occurring at the local scale (areas of about 1–25 km2). In particular, the joint effects of the advection of rain storms over the ground, and the deformation of spa...
Gespeichert in:
Veröffentlicht in: | Water resources research 2018-06, Vol.54 (6), p.4108-4130 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4130 |
---|---|
container_issue | 6 |
container_start_page | 4108 |
container_title | Water resources research |
container_volume | 54 |
creator | Benoit, Lionel Allard, Denis Mariethoz, Gregoire |
description | New measurement devices allow observing rainfall with unprecedented resolution. Such observations often reveal new features of rainfall occurring at the local scale (areas of about 1–25 km2). In particular, the joint effects of the advection of rain storms over the ground, and the deformation of spatial rain patterns along time, generate a complex rain field dependence structure characterized by strong space‐time interactions. When a high‐resolution is desired, stochastic rainfall models must therefore be upgraded to account for these new features of rain fields. In this paper, we propose to improve the meta‐Gaussian framework, which is typically used to model space‐time rain fields, to the specific case of sub‐kilometer rainfall. Particular attention is paid to the reproduction of the main features of local scale rainfall, namely: (1) a skewed distribution of rain intensities with the presence of intraevent intermittency and (2) a space‐time dependency structure with strong and complex space‐time interactions. The resulting model, able to generate high‐resolution, continuous and space‐time rain fields at the local scale, is validated and applied to a real data set collected by a network of drop‐counting rain gauges recording rainfall at a 1 min frequency. The combination of these data with the proposed model results in a complete framework that allows resolving the features of high‐resolution rainfall (1 min temporal resolution, 100 m spatial resolution) over a small alpine catchment in Switzerland.
Key Points
A stochastic rainfall model appropriate for very high‐resolution rainfall features is proposed
An efficient Bayesian estimation is used to infer model parameters
The proposed framework is applied to a very dense rain gauge network |
doi_str_mv | 10.1029/2018WR022817 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02623791v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079863659</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4027-cf28cca84b871adbafc09d26f6eccb17ed4ef3cdad72fbb1cc780b1684875c523</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqzgcYcCU4mptk8rMsRa1QEaZKlyGTSWzqtFPnR-nOR_AZfRKnjIgrVxcuH4fDQegU8CVgoq4IBjlPMSESxB4agGIsFkrQfTTAmNEYqBKH6KiulxgDS7gYoGTWlHZh6ibYKDVh7U1RRPdl7oqwfo5ME83a7Ovj8yUU5co1ropm1hTuGB10sHYnP3eInm6uH8eTePpwezceTWPDMBGx9URaayTLpACTZ8ZbrHLCPXfWZiBczpynNje5ID7LwFohcQZcMikSmxA6ROd97sIUelOFlam2ujRBT0ZTvfthwgkVCt6gs2e93VTla-vqRi_Ltlp39TTBQklOeaI6ddErW5V1XTn_GwtY70bUf0fsOO35eyjc9l-r5-k4JZQmgn4DCp5zDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079863659</pqid></control><display><type>article</type><title>Stochastic Rainfall Modeling at Sub‐kilometer Scale</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Benoit, Lionel ; Allard, Denis ; Mariethoz, Gregoire</creator><creatorcontrib>Benoit, Lionel ; Allard, Denis ; Mariethoz, Gregoire</creatorcontrib><description>New measurement devices allow observing rainfall with unprecedented resolution. Such observations often reveal new features of rainfall occurring at the local scale (areas of about 1–25 km2). In particular, the joint effects of the advection of rain storms over the ground, and the deformation of spatial rain patterns along time, generate a complex rain field dependence structure characterized by strong space‐time interactions. When a high‐resolution is desired, stochastic rainfall models must therefore be upgraded to account for these new features of rain fields. In this paper, we propose to improve the meta‐Gaussian framework, which is typically used to model space‐time rain fields, to the specific case of sub‐kilometer rainfall. Particular attention is paid to the reproduction of the main features of local scale rainfall, namely: (1) a skewed distribution of rain intensities with the presence of intraevent intermittency and (2) a space‐time dependency structure with strong and complex space‐time interactions. The resulting model, able to generate high‐resolution, continuous and space‐time rain fields at the local scale, is validated and applied to a real data set collected by a network of drop‐counting rain gauges recording rainfall at a 1 min frequency. The combination of these data with the proposed model results in a complete framework that allows resolving the features of high‐resolution rainfall (1 min temporal resolution, 100 m spatial resolution) over a small alpine catchment in Switzerland.
Key Points
A stochastic rainfall model appropriate for very high‐resolution rainfall features is proposed
An efficient Bayesian estimation is used to infer model parameters
The proposed framework is applied to a very dense rain gauge network</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2018WR022817</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Advection ; Atmospheric precipitations ; Bayesian estimation ; Catchment area ; Deformation ; Environmental Sciences ; Fields ; Frameworks ; Gauges ; Global Changes ; high‐resolution rain gauges ; Interactions ; Measuring instruments ; Modelling ; Rain ; Rain gauges ; Rainfall ; Rainfall models ; rainfall variability ; Resolution ; Skewed distributions ; space‐time statistics ; Spatial discrimination ; Spatial resolution ; stochastic rainfall model ; Storms ; Temporal resolution ; Time dependence</subject><ispartof>Water resources research, 2018-06, Vol.54 (6), p.4108-4130</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4027-cf28cca84b871adbafc09d26f6eccb17ed4ef3cdad72fbb1cc780b1684875c523</citedby><cites>FETCH-LOGICAL-a4027-cf28cca84b871adbafc09d26f6eccb17ed4ef3cdad72fbb1cc780b1684875c523</cites><orcidid>0000-0002-8182-0152 ; 0000-0002-8820-2808 ; 0000-0001-7944-1906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018WR022817$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018WR022817$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02623791$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Benoit, Lionel</creatorcontrib><creatorcontrib>Allard, Denis</creatorcontrib><creatorcontrib>Mariethoz, Gregoire</creatorcontrib><title>Stochastic Rainfall Modeling at Sub‐kilometer Scale</title><title>Water resources research</title><description>New measurement devices allow observing rainfall with unprecedented resolution. Such observations often reveal new features of rainfall occurring at the local scale (areas of about 1–25 km2). In particular, the joint effects of the advection of rain storms over the ground, and the deformation of spatial rain patterns along time, generate a complex rain field dependence structure characterized by strong space‐time interactions. When a high‐resolution is desired, stochastic rainfall models must therefore be upgraded to account for these new features of rain fields. In this paper, we propose to improve the meta‐Gaussian framework, which is typically used to model space‐time rain fields, to the specific case of sub‐kilometer rainfall. Particular attention is paid to the reproduction of the main features of local scale rainfall, namely: (1) a skewed distribution of rain intensities with the presence of intraevent intermittency and (2) a space‐time dependency structure with strong and complex space‐time interactions. The resulting model, able to generate high‐resolution, continuous and space‐time rain fields at the local scale, is validated and applied to a real data set collected by a network of drop‐counting rain gauges recording rainfall at a 1 min frequency. The combination of these data with the proposed model results in a complete framework that allows resolving the features of high‐resolution rainfall (1 min temporal resolution, 100 m spatial resolution) over a small alpine catchment in Switzerland.
Key Points
A stochastic rainfall model appropriate for very high‐resolution rainfall features is proposed
An efficient Bayesian estimation is used to infer model parameters
The proposed framework is applied to a very dense rain gauge network</description><subject>Advection</subject><subject>Atmospheric precipitations</subject><subject>Bayesian estimation</subject><subject>Catchment area</subject><subject>Deformation</subject><subject>Environmental Sciences</subject><subject>Fields</subject><subject>Frameworks</subject><subject>Gauges</subject><subject>Global Changes</subject><subject>high‐resolution rain gauges</subject><subject>Interactions</subject><subject>Measuring instruments</subject><subject>Modelling</subject><subject>Rain</subject><subject>Rain gauges</subject><subject>Rainfall</subject><subject>Rainfall models</subject><subject>rainfall variability</subject><subject>Resolution</subject><subject>Skewed distributions</subject><subject>space‐time statistics</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>stochastic rainfall model</subject><subject>Storms</subject><subject>Temporal resolution</subject><subject>Time dependence</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqzgcYcCU4mptk8rMsRa1QEaZKlyGTSWzqtFPnR-nOR_AZfRKnjIgrVxcuH4fDQegU8CVgoq4IBjlPMSESxB4agGIsFkrQfTTAmNEYqBKH6KiulxgDS7gYoGTWlHZh6ibYKDVh7U1RRPdl7oqwfo5ME83a7Ovj8yUU5co1ropm1hTuGB10sHYnP3eInm6uH8eTePpwezceTWPDMBGx9URaayTLpACTZ8ZbrHLCPXfWZiBczpynNje5ID7LwFohcQZcMikSmxA6ROd97sIUelOFlam2ujRBT0ZTvfthwgkVCt6gs2e93VTla-vqRi_Ltlp39TTBQklOeaI6ddErW5V1XTn_GwtY70bUf0fsOO35eyjc9l-r5-k4JZQmgn4DCp5zDg</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Benoit, Lionel</creator><creator>Allard, Denis</creator><creator>Mariethoz, Gregoire</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8182-0152</orcidid><orcidid>https://orcid.org/0000-0002-8820-2808</orcidid><orcidid>https://orcid.org/0000-0001-7944-1906</orcidid></search><sort><creationdate>201806</creationdate><title>Stochastic Rainfall Modeling at Sub‐kilometer Scale</title><author>Benoit, Lionel ; Allard, Denis ; Mariethoz, Gregoire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4027-cf28cca84b871adbafc09d26f6eccb17ed4ef3cdad72fbb1cc780b1684875c523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advection</topic><topic>Atmospheric precipitations</topic><topic>Bayesian estimation</topic><topic>Catchment area</topic><topic>Deformation</topic><topic>Environmental Sciences</topic><topic>Fields</topic><topic>Frameworks</topic><topic>Gauges</topic><topic>Global Changes</topic><topic>high‐resolution rain gauges</topic><topic>Interactions</topic><topic>Measuring instruments</topic><topic>Modelling</topic><topic>Rain</topic><topic>Rain gauges</topic><topic>Rainfall</topic><topic>Rainfall models</topic><topic>rainfall variability</topic><topic>Resolution</topic><topic>Skewed distributions</topic><topic>space‐time statistics</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>stochastic rainfall model</topic><topic>Storms</topic><topic>Temporal resolution</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benoit, Lionel</creatorcontrib><creatorcontrib>Allard, Denis</creatorcontrib><creatorcontrib>Mariethoz, Gregoire</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benoit, Lionel</au><au>Allard, Denis</au><au>Mariethoz, Gregoire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Rainfall Modeling at Sub‐kilometer Scale</atitle><jtitle>Water resources research</jtitle><date>2018-06</date><risdate>2018</risdate><volume>54</volume><issue>6</issue><spage>4108</spage><epage>4130</epage><pages>4108-4130</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>New measurement devices allow observing rainfall with unprecedented resolution. Such observations often reveal new features of rainfall occurring at the local scale (areas of about 1–25 km2). In particular, the joint effects of the advection of rain storms over the ground, and the deformation of spatial rain patterns along time, generate a complex rain field dependence structure characterized by strong space‐time interactions. When a high‐resolution is desired, stochastic rainfall models must therefore be upgraded to account for these new features of rain fields. In this paper, we propose to improve the meta‐Gaussian framework, which is typically used to model space‐time rain fields, to the specific case of sub‐kilometer rainfall. Particular attention is paid to the reproduction of the main features of local scale rainfall, namely: (1) a skewed distribution of rain intensities with the presence of intraevent intermittency and (2) a space‐time dependency structure with strong and complex space‐time interactions. The resulting model, able to generate high‐resolution, continuous and space‐time rain fields at the local scale, is validated and applied to a real data set collected by a network of drop‐counting rain gauges recording rainfall at a 1 min frequency. The combination of these data with the proposed model results in a complete framework that allows resolving the features of high‐resolution rainfall (1 min temporal resolution, 100 m spatial resolution) over a small alpine catchment in Switzerland.
Key Points
A stochastic rainfall model appropriate for very high‐resolution rainfall features is proposed
An efficient Bayesian estimation is used to infer model parameters
The proposed framework is applied to a very dense rain gauge network</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2018WR022817</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-8182-0152</orcidid><orcidid>https://orcid.org/0000-0002-8820-2808</orcidid><orcidid>https://orcid.org/0000-0001-7944-1906</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1397 |
ispartof | Water resources research, 2018-06, Vol.54 (6), p.4108-4130 |
issn | 0043-1397 1944-7973 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02623791v1 |
source | Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Advection Atmospheric precipitations Bayesian estimation Catchment area Deformation Environmental Sciences Fields Frameworks Gauges Global Changes high‐resolution rain gauges Interactions Measuring instruments Modelling Rain Rain gauges Rainfall Rainfall models rainfall variability Resolution Skewed distributions space‐time statistics Spatial discrimination Spatial resolution stochastic rainfall model Storms Temporal resolution Time dependence |
title | Stochastic Rainfall Modeling at Sub‐kilometer Scale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T10%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Rainfall%20Modeling%20at%20Sub%E2%80%90kilometer%20Scale&rft.jtitle=Water%20resources%20research&rft.au=Benoit,%20Lionel&rft.date=2018-06&rft.volume=54&rft.issue=6&rft.spage=4108&rft.epage=4130&rft.pages=4108-4130&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2018WR022817&rft_dat=%3Cproquest_hal_p%3E2079863659%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079863659&rft_id=info:pmid/&rfr_iscdi=true |