Stochastic Rainfall Modeling at Sub‐kilometer Scale

New measurement devices allow observing rainfall with unprecedented resolution. Such observations often reveal new features of rainfall occurring at the local scale (areas of about 1–25 km2). In particular, the joint effects of the advection of rain storms over the ground, and the deformation of spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2018-06, Vol.54 (6), p.4108-4130
Hauptverfasser: Benoit, Lionel, Allard, Denis, Mariethoz, Gregoire
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4130
container_issue 6
container_start_page 4108
container_title Water resources research
container_volume 54
creator Benoit, Lionel
Allard, Denis
Mariethoz, Gregoire
description New measurement devices allow observing rainfall with unprecedented resolution. Such observations often reveal new features of rainfall occurring at the local scale (areas of about 1–25 km2). In particular, the joint effects of the advection of rain storms over the ground, and the deformation of spatial rain patterns along time, generate a complex rain field dependence structure characterized by strong space‐time interactions. When a high‐resolution is desired, stochastic rainfall models must therefore be upgraded to account for these new features of rain fields. In this paper, we propose to improve the meta‐Gaussian framework, which is typically used to model space‐time rain fields, to the specific case of sub‐kilometer rainfall. Particular attention is paid to the reproduction of the main features of local scale rainfall, namely: (1) a skewed distribution of rain intensities with the presence of intraevent intermittency and (2) a space‐time dependency structure with strong and complex space‐time interactions. The resulting model, able to generate high‐resolution, continuous and space‐time rain fields at the local scale, is validated and applied to a real data set collected by a network of drop‐counting rain gauges recording rainfall at a 1 min frequency. The combination of these data with the proposed model results in a complete framework that allows resolving the features of high‐resolution rainfall (1 min temporal resolution, 100 m spatial resolution) over a small alpine catchment in Switzerland. Key Points A stochastic rainfall model appropriate for very high‐resolution rainfall features is proposed An efficient Bayesian estimation is used to infer model parameters The proposed framework is applied to a very dense rain gauge network
doi_str_mv 10.1029/2018WR022817
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02623791v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079863659</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4027-cf28cca84b871adbafc09d26f6eccb17ed4ef3cdad72fbb1cc780b1684875c523</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqzgcYcCU4mptk8rMsRa1QEaZKlyGTSWzqtFPnR-nOR_AZfRKnjIgrVxcuH4fDQegU8CVgoq4IBjlPMSESxB4agGIsFkrQfTTAmNEYqBKH6KiulxgDS7gYoGTWlHZh6ibYKDVh7U1RRPdl7oqwfo5ME83a7Ovj8yUU5co1ropm1hTuGB10sHYnP3eInm6uH8eTePpwezceTWPDMBGx9URaayTLpACTZ8ZbrHLCPXfWZiBczpynNje5ID7LwFohcQZcMikSmxA6ROd97sIUelOFlam2ujRBT0ZTvfthwgkVCt6gs2e93VTla-vqRi_Ltlp39TTBQklOeaI6ddErW5V1XTn_GwtY70bUf0fsOO35eyjc9l-r5-k4JZQmgn4DCp5zDg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2079863659</pqid></control><display><type>article</type><title>Stochastic Rainfall Modeling at Sub‐kilometer Scale</title><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Benoit, Lionel ; Allard, Denis ; Mariethoz, Gregoire</creator><creatorcontrib>Benoit, Lionel ; Allard, Denis ; Mariethoz, Gregoire</creatorcontrib><description>New measurement devices allow observing rainfall with unprecedented resolution. Such observations often reveal new features of rainfall occurring at the local scale (areas of about 1–25 km2). In particular, the joint effects of the advection of rain storms over the ground, and the deformation of spatial rain patterns along time, generate a complex rain field dependence structure characterized by strong space‐time interactions. When a high‐resolution is desired, stochastic rainfall models must therefore be upgraded to account for these new features of rain fields. In this paper, we propose to improve the meta‐Gaussian framework, which is typically used to model space‐time rain fields, to the specific case of sub‐kilometer rainfall. Particular attention is paid to the reproduction of the main features of local scale rainfall, namely: (1) a skewed distribution of rain intensities with the presence of intraevent intermittency and (2) a space‐time dependency structure with strong and complex space‐time interactions. The resulting model, able to generate high‐resolution, continuous and space‐time rain fields at the local scale, is validated and applied to a real data set collected by a network of drop‐counting rain gauges recording rainfall at a 1 min frequency. The combination of these data with the proposed model results in a complete framework that allows resolving the features of high‐resolution rainfall (1 min temporal resolution, 100 m spatial resolution) over a small alpine catchment in Switzerland. Key Points A stochastic rainfall model appropriate for very high‐resolution rainfall features is proposed An efficient Bayesian estimation is used to infer model parameters The proposed framework is applied to a very dense rain gauge network</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2018WR022817</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Advection ; Atmospheric precipitations ; Bayesian estimation ; Catchment area ; Deformation ; Environmental Sciences ; Fields ; Frameworks ; Gauges ; Global Changes ; high‐resolution rain gauges ; Interactions ; Measuring instruments ; Modelling ; Rain ; Rain gauges ; Rainfall ; Rainfall models ; rainfall variability ; Resolution ; Skewed distributions ; space‐time statistics ; Spatial discrimination ; Spatial resolution ; stochastic rainfall model ; Storms ; Temporal resolution ; Time dependence</subject><ispartof>Water resources research, 2018-06, Vol.54 (6), p.4108-4130</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4027-cf28cca84b871adbafc09d26f6eccb17ed4ef3cdad72fbb1cc780b1684875c523</citedby><cites>FETCH-LOGICAL-a4027-cf28cca84b871adbafc09d26f6eccb17ed4ef3cdad72fbb1cc780b1684875c523</cites><orcidid>0000-0002-8182-0152 ; 0000-0002-8820-2808 ; 0000-0001-7944-1906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018WR022817$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018WR022817$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,11493,27901,27902,45550,45551,46443,46867</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02623791$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Benoit, Lionel</creatorcontrib><creatorcontrib>Allard, Denis</creatorcontrib><creatorcontrib>Mariethoz, Gregoire</creatorcontrib><title>Stochastic Rainfall Modeling at Sub‐kilometer Scale</title><title>Water resources research</title><description>New measurement devices allow observing rainfall with unprecedented resolution. Such observations often reveal new features of rainfall occurring at the local scale (areas of about 1–25 km2). In particular, the joint effects of the advection of rain storms over the ground, and the deformation of spatial rain patterns along time, generate a complex rain field dependence structure characterized by strong space‐time interactions. When a high‐resolution is desired, stochastic rainfall models must therefore be upgraded to account for these new features of rain fields. In this paper, we propose to improve the meta‐Gaussian framework, which is typically used to model space‐time rain fields, to the specific case of sub‐kilometer rainfall. Particular attention is paid to the reproduction of the main features of local scale rainfall, namely: (1) a skewed distribution of rain intensities with the presence of intraevent intermittency and (2) a space‐time dependency structure with strong and complex space‐time interactions. The resulting model, able to generate high‐resolution, continuous and space‐time rain fields at the local scale, is validated and applied to a real data set collected by a network of drop‐counting rain gauges recording rainfall at a 1 min frequency. The combination of these data with the proposed model results in a complete framework that allows resolving the features of high‐resolution rainfall (1 min temporal resolution, 100 m spatial resolution) over a small alpine catchment in Switzerland. Key Points A stochastic rainfall model appropriate for very high‐resolution rainfall features is proposed An efficient Bayesian estimation is used to infer model parameters The proposed framework is applied to a very dense rain gauge network</description><subject>Advection</subject><subject>Atmospheric precipitations</subject><subject>Bayesian estimation</subject><subject>Catchment area</subject><subject>Deformation</subject><subject>Environmental Sciences</subject><subject>Fields</subject><subject>Frameworks</subject><subject>Gauges</subject><subject>Global Changes</subject><subject>high‐resolution rain gauges</subject><subject>Interactions</subject><subject>Measuring instruments</subject><subject>Modelling</subject><subject>Rain</subject><subject>Rain gauges</subject><subject>Rainfall</subject><subject>Rainfall models</subject><subject>rainfall variability</subject><subject>Resolution</subject><subject>Skewed distributions</subject><subject>space‐time statistics</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>stochastic rainfall model</subject><subject>Storms</subject><subject>Temporal resolution</subject><subject>Time dependence</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqzgcYcCU4mptk8rMsRa1QEaZKlyGTSWzqtFPnR-nOR_AZfRKnjIgrVxcuH4fDQegU8CVgoq4IBjlPMSESxB4agGIsFkrQfTTAmNEYqBKH6KiulxgDS7gYoGTWlHZh6ibYKDVh7U1RRPdl7oqwfo5ME83a7Ovj8yUU5co1ropm1hTuGB10sHYnP3eInm6uH8eTePpwezceTWPDMBGx9URaayTLpACTZ8ZbrHLCPXfWZiBczpynNje5ID7LwFohcQZcMikSmxA6ROd97sIUelOFlam2ujRBT0ZTvfthwgkVCt6gs2e93VTla-vqRi_Ltlp39TTBQklOeaI6ddErW5V1XTn_GwtY70bUf0fsOO35eyjc9l-r5-k4JZQmgn4DCp5zDg</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Benoit, Lionel</creator><creator>Allard, Denis</creator><creator>Mariethoz, Gregoire</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8182-0152</orcidid><orcidid>https://orcid.org/0000-0002-8820-2808</orcidid><orcidid>https://orcid.org/0000-0001-7944-1906</orcidid></search><sort><creationdate>201806</creationdate><title>Stochastic Rainfall Modeling at Sub‐kilometer Scale</title><author>Benoit, Lionel ; Allard, Denis ; Mariethoz, Gregoire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4027-cf28cca84b871adbafc09d26f6eccb17ed4ef3cdad72fbb1cc780b1684875c523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Advection</topic><topic>Atmospheric precipitations</topic><topic>Bayesian estimation</topic><topic>Catchment area</topic><topic>Deformation</topic><topic>Environmental Sciences</topic><topic>Fields</topic><topic>Frameworks</topic><topic>Gauges</topic><topic>Global Changes</topic><topic>high‐resolution rain gauges</topic><topic>Interactions</topic><topic>Measuring instruments</topic><topic>Modelling</topic><topic>Rain</topic><topic>Rain gauges</topic><topic>Rainfall</topic><topic>Rainfall models</topic><topic>rainfall variability</topic><topic>Resolution</topic><topic>Skewed distributions</topic><topic>space‐time statistics</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>stochastic rainfall model</topic><topic>Storms</topic><topic>Temporal resolution</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benoit, Lionel</creatorcontrib><creatorcontrib>Allard, Denis</creatorcontrib><creatorcontrib>Mariethoz, Gregoire</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benoit, Lionel</au><au>Allard, Denis</au><au>Mariethoz, Gregoire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Rainfall Modeling at Sub‐kilometer Scale</atitle><jtitle>Water resources research</jtitle><date>2018-06</date><risdate>2018</risdate><volume>54</volume><issue>6</issue><spage>4108</spage><epage>4130</epage><pages>4108-4130</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>New measurement devices allow observing rainfall with unprecedented resolution. Such observations often reveal new features of rainfall occurring at the local scale (areas of about 1–25 km2). In particular, the joint effects of the advection of rain storms over the ground, and the deformation of spatial rain patterns along time, generate a complex rain field dependence structure characterized by strong space‐time interactions. When a high‐resolution is desired, stochastic rainfall models must therefore be upgraded to account for these new features of rain fields. In this paper, we propose to improve the meta‐Gaussian framework, which is typically used to model space‐time rain fields, to the specific case of sub‐kilometer rainfall. Particular attention is paid to the reproduction of the main features of local scale rainfall, namely: (1) a skewed distribution of rain intensities with the presence of intraevent intermittency and (2) a space‐time dependency structure with strong and complex space‐time interactions. The resulting model, able to generate high‐resolution, continuous and space‐time rain fields at the local scale, is validated and applied to a real data set collected by a network of drop‐counting rain gauges recording rainfall at a 1 min frequency. The combination of these data with the proposed model results in a complete framework that allows resolving the features of high‐resolution rainfall (1 min temporal resolution, 100 m spatial resolution) over a small alpine catchment in Switzerland. Key Points A stochastic rainfall model appropriate for very high‐resolution rainfall features is proposed An efficient Bayesian estimation is used to infer model parameters The proposed framework is applied to a very dense rain gauge network</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018WR022817</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-8182-0152</orcidid><orcidid>https://orcid.org/0000-0002-8820-2808</orcidid><orcidid>https://orcid.org/0000-0001-7944-1906</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2018-06, Vol.54 (6), p.4108-4130
issn 0043-1397
1944-7973
language eng
recordid cdi_hal_primary_oai_HAL_hal_02623791v1
source Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Advection
Atmospheric precipitations
Bayesian estimation
Catchment area
Deformation
Environmental Sciences
Fields
Frameworks
Gauges
Global Changes
high‐resolution rain gauges
Interactions
Measuring instruments
Modelling
Rain
Rain gauges
Rainfall
Rainfall models
rainfall variability
Resolution
Skewed distributions
space‐time statistics
Spatial discrimination
Spatial resolution
stochastic rainfall model
Storms
Temporal resolution
Time dependence
title Stochastic Rainfall Modeling at Sub‐kilometer Scale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T10%3A01%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Rainfall%20Modeling%20at%20Sub%E2%80%90kilometer%20Scale&rft.jtitle=Water%20resources%20research&rft.au=Benoit,%20Lionel&rft.date=2018-06&rft.volume=54&rft.issue=6&rft.spage=4108&rft.epage=4130&rft.pages=4108-4130&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2018WR022817&rft_dat=%3Cproquest_hal_p%3E2079863659%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2079863659&rft_id=info:pmid/&rfr_iscdi=true