Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators
•The use of certain anion/cation exchange membranes in MFC is first presented.•The type of membrane separator affected the efficiency of MFC start-up.•MFC with anion exchange membrane showed outstanding performance.•Geobacter was dominantly selected on anodes independently of membrane type.•Voltammo...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2019-04, Vol.278, p.279-286 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 286 |
---|---|
container_issue | |
container_start_page | 279 |
container_title | Bioresource technology |
container_volume | 278 |
creator | Koók, László Quéméner, Elie Desmond-Le Bakonyi, Péter Zitka, Jan Trably, Eric Tóth, Gábor Pavlovec, Lukas Pientka, Zbynek Bernet, Nicolas Bélafi-Bakó, Katalin Nemestóthy, Nándor |
description | •The use of certain anion/cation exchange membranes in MFC is first presented.•The type of membrane separator affected the efficiency of MFC start-up.•MFC with anion exchange membrane showed outstanding performance.•Geobacter was dominantly selected on anodes independently of membrane type.•Voltammograms indicated various anode surface coverage of redox components.
In this study, microbial fuel cells (MFCs) – operated with novel cation- and anion-exchange membranes, in particular AN-VPA 60 (CEM) and PSEBS DABCO (AEM) – were assessed comparatively with Nafion proton exchange membrane (PEM). The process characterization involved versatile electrochemical (polarization, electrochemical impedance spectroscopy – EIS, cyclic voltammetry – CV) and biological (microbial structure analysis) methods in order to reveal the influence of membrane-type during start-up. In fact, the use of AEM led to 2–5 times higher energy yields than CEM and PEM and the lowest MFC internal resistance (148 ± 17 Ω) by the end of start-up. Regardless of the membrane-type, Geobacter was dominantly enriched on all anodes. Besides, CV and EIS measurements implied higher anode surface coverage of redox compounds for MFCs and lower membrane resistance with AEM, respectively. As a result, AEM based on PSEBS DABCO could be found as a promising material to substitute Nafion. |
doi_str_mv | 10.1016/j.biortech.2019.01.097 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02623479v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096085241930121X</els_id><sourcerecordid>2179507695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-d7ea349e0aac5945081a5169e9314969e849196b3cda140799162eb09a4e00783</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhK1Q-wiFh_CdxfKNUQJFW4gJny3EmxKskXmzvtv32eLVtrz2NZvSbN0_zCLliUDNg7edd3fsQM7qp5sB0DawGrV6RDeuUqLhW7WuyAd1C1TVcXpB3Ke0AQDDF35ILAQo6IdiG5K842WORomGk-S5UbrJLj5Eu3sXQeztTnNHlGNyEZVb69JAyLommbIuBoTrs6Z3PEx38OGLENVMf1grvi9L6F-mCSx_tijTh3kabQ0zvyZvRzgk_PNZL8uf7t983t9X214-fN9fbyknR5GpQaIXUCNa6RssGOmYb1mrUgkldaic1020v3GCZBKU1azn2oK1EANWJS_LprDvZ2eyjX2x8MMF6c3u9NacZ8JYLqfSRFfbjmd3H8O-AKZvFJ4fzXKyHQzKcc-g6pjV_GWVKN6Ba3RS0PaPlmSlFHJ9tMDCnIM3OPAVpTkEaYKYEWRavHm8c-gWH57Wn5Arw5QxgeeDRYzTJeVwdDj6WvMwQ_Es3_gPzL7Kl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179507695</pqid></control><display><type>article</type><title>Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Koók, László ; Quéméner, Elie Desmond-Le ; Bakonyi, Péter ; Zitka, Jan ; Trably, Eric ; Tóth, Gábor ; Pavlovec, Lukas ; Pientka, Zbynek ; Bernet, Nicolas ; Bélafi-Bakó, Katalin ; Nemestóthy, Nándor</creator><creatorcontrib>Koók, László ; Quéméner, Elie Desmond-Le ; Bakonyi, Péter ; Zitka, Jan ; Trably, Eric ; Tóth, Gábor ; Pavlovec, Lukas ; Pientka, Zbynek ; Bernet, Nicolas ; Bélafi-Bakó, Katalin ; Nemestóthy, Nándor</creatorcontrib><description>•The use of certain anion/cation exchange membranes in MFC is first presented.•The type of membrane separator affected the efficiency of MFC start-up.•MFC with anion exchange membrane showed outstanding performance.•Geobacter was dominantly selected on anodes independently of membrane type.•Voltammograms indicated various anode surface coverage of redox components.
In this study, microbial fuel cells (MFCs) – operated with novel cation- and anion-exchange membranes, in particular AN-VPA 60 (CEM) and PSEBS DABCO (AEM) – were assessed comparatively with Nafion proton exchange membrane (PEM). The process characterization involved versatile electrochemical (polarization, electrochemical impedance spectroscopy – EIS, cyclic voltammetry – CV) and biological (microbial structure analysis) methods in order to reveal the influence of membrane-type during start-up. In fact, the use of AEM led to 2–5 times higher energy yields than CEM and PEM and the lowest MFC internal resistance (148 ± 17 Ω) by the end of start-up. Regardless of the membrane-type, Geobacter was dominantly enriched on all anodes. Besides, CV and EIS measurements implied higher anode surface coverage of redox compounds for MFCs and lower membrane resistance with AEM, respectively. As a result, AEM based on PSEBS DABCO could be found as a promising material to substitute Nafion.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2019.01.097</identifier><identifier>PMID: 30708331</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>anion exchange ; anodes ; Bioelectrochemical system ; dielectric spectroscopy ; electrochemistry ; energy ; Environmental Sciences ; fuels ; Geobacter ; ion-exchange membranes ; Life Sciences ; Membrane ; Microbial community structure ; Microbial fuel cell ; Principal component analysis ; Separator ; technology ; voltammetry</subject><ispartof>Bioresource technology, 2019-04, Vol.278, p.279-286</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-d7ea349e0aac5945081a5169e9314969e849196b3cda140799162eb09a4e00783</citedby><cites>FETCH-LOGICAL-c435t-d7ea349e0aac5945081a5169e9314969e849196b3cda140799162eb09a4e00783</cites><orcidid>0000-0003-3812-4490 ; 0000-0002-7041-2962 ; 0000-0003-1675-2744 ; 0000-0003-2710-3547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2019.01.097$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30708331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02623479$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Koók, László</creatorcontrib><creatorcontrib>Quéméner, Elie Desmond-Le</creatorcontrib><creatorcontrib>Bakonyi, Péter</creatorcontrib><creatorcontrib>Zitka, Jan</creatorcontrib><creatorcontrib>Trably, Eric</creatorcontrib><creatorcontrib>Tóth, Gábor</creatorcontrib><creatorcontrib>Pavlovec, Lukas</creatorcontrib><creatorcontrib>Pientka, Zbynek</creatorcontrib><creatorcontrib>Bernet, Nicolas</creatorcontrib><creatorcontrib>Bélafi-Bakó, Katalin</creatorcontrib><creatorcontrib>Nemestóthy, Nándor</creatorcontrib><title>Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>•The use of certain anion/cation exchange membranes in MFC is first presented.•The type of membrane separator affected the efficiency of MFC start-up.•MFC with anion exchange membrane showed outstanding performance.•Geobacter was dominantly selected on anodes independently of membrane type.•Voltammograms indicated various anode surface coverage of redox components.
In this study, microbial fuel cells (MFCs) – operated with novel cation- and anion-exchange membranes, in particular AN-VPA 60 (CEM) and PSEBS DABCO (AEM) – were assessed comparatively with Nafion proton exchange membrane (PEM). The process characterization involved versatile electrochemical (polarization, electrochemical impedance spectroscopy – EIS, cyclic voltammetry – CV) and biological (microbial structure analysis) methods in order to reveal the influence of membrane-type during start-up. In fact, the use of AEM led to 2–5 times higher energy yields than CEM and PEM and the lowest MFC internal resistance (148 ± 17 Ω) by the end of start-up. Regardless of the membrane-type, Geobacter was dominantly enriched on all anodes. Besides, CV and EIS measurements implied higher anode surface coverage of redox compounds for MFCs and lower membrane resistance with AEM, respectively. As a result, AEM based on PSEBS DABCO could be found as a promising material to substitute Nafion.</description><subject>anion exchange</subject><subject>anodes</subject><subject>Bioelectrochemical system</subject><subject>dielectric spectroscopy</subject><subject>electrochemistry</subject><subject>energy</subject><subject>Environmental Sciences</subject><subject>fuels</subject><subject>Geobacter</subject><subject>ion-exchange membranes</subject><subject>Life Sciences</subject><subject>Membrane</subject><subject>Microbial community structure</subject><subject>Microbial fuel cell</subject><subject>Principal component analysis</subject><subject>Separator</subject><subject>technology</subject><subject>voltammetry</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS0EokvhK1Q-wiFh_CdxfKNUQJFW4gJny3EmxKskXmzvtv32eLVtrz2NZvSbN0_zCLliUDNg7edd3fsQM7qp5sB0DawGrV6RDeuUqLhW7WuyAd1C1TVcXpB3Ke0AQDDF35ILAQo6IdiG5K842WORomGk-S5UbrJLj5Eu3sXQeztTnNHlGNyEZVb69JAyLommbIuBoTrs6Z3PEx38OGLENVMf1grvi9L6F-mCSx_tijTh3kabQ0zvyZvRzgk_PNZL8uf7t983t9X214-fN9fbyknR5GpQaIXUCNa6RssGOmYb1mrUgkldaic1020v3GCZBKU1azn2oK1EANWJS_LprDvZ2eyjX2x8MMF6c3u9NacZ8JYLqfSRFfbjmd3H8O-AKZvFJ4fzXKyHQzKcc-g6pjV_GWVKN6Ba3RS0PaPlmSlFHJ9tMDCnIM3OPAVpTkEaYKYEWRavHm8c-gWH57Wn5Arw5QxgeeDRYzTJeVwdDj6WvMwQ_Es3_gPzL7Kl</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Koók, László</creator><creator>Quéméner, Elie Desmond-Le</creator><creator>Bakonyi, Péter</creator><creator>Zitka, Jan</creator><creator>Trably, Eric</creator><creator>Tóth, Gábor</creator><creator>Pavlovec, Lukas</creator><creator>Pientka, Zbynek</creator><creator>Bernet, Nicolas</creator><creator>Bélafi-Bakó, Katalin</creator><creator>Nemestóthy, Nándor</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3812-4490</orcidid><orcidid>https://orcid.org/0000-0002-7041-2962</orcidid><orcidid>https://orcid.org/0000-0003-1675-2744</orcidid><orcidid>https://orcid.org/0000-0003-2710-3547</orcidid></search><sort><creationdate>20190401</creationdate><title>Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators</title><author>Koók, László ; Quéméner, Elie Desmond-Le ; Bakonyi, Péter ; Zitka, Jan ; Trably, Eric ; Tóth, Gábor ; Pavlovec, Lukas ; Pientka, Zbynek ; Bernet, Nicolas ; Bélafi-Bakó, Katalin ; Nemestóthy, Nándor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-d7ea349e0aac5945081a5169e9314969e849196b3cda140799162eb09a4e00783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>anion exchange</topic><topic>anodes</topic><topic>Bioelectrochemical system</topic><topic>dielectric spectroscopy</topic><topic>electrochemistry</topic><topic>energy</topic><topic>Environmental Sciences</topic><topic>fuels</topic><topic>Geobacter</topic><topic>ion-exchange membranes</topic><topic>Life Sciences</topic><topic>Membrane</topic><topic>Microbial community structure</topic><topic>Microbial fuel cell</topic><topic>Principal component analysis</topic><topic>Separator</topic><topic>technology</topic><topic>voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koók, László</creatorcontrib><creatorcontrib>Quéméner, Elie Desmond-Le</creatorcontrib><creatorcontrib>Bakonyi, Péter</creatorcontrib><creatorcontrib>Zitka, Jan</creatorcontrib><creatorcontrib>Trably, Eric</creatorcontrib><creatorcontrib>Tóth, Gábor</creatorcontrib><creatorcontrib>Pavlovec, Lukas</creatorcontrib><creatorcontrib>Pientka, Zbynek</creatorcontrib><creatorcontrib>Bernet, Nicolas</creatorcontrib><creatorcontrib>Bélafi-Bakó, Katalin</creatorcontrib><creatorcontrib>Nemestóthy, Nándor</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koók, László</au><au>Quéméner, Elie Desmond-Le</au><au>Bakonyi, Péter</au><au>Zitka, Jan</au><au>Trably, Eric</au><au>Tóth, Gábor</au><au>Pavlovec, Lukas</au><au>Pientka, Zbynek</au><au>Bernet, Nicolas</au><au>Bélafi-Bakó, Katalin</au><au>Nemestóthy, Nándor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>278</volume><spage>279</spage><epage>286</epage><pages>279-286</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>•The use of certain anion/cation exchange membranes in MFC is first presented.•The type of membrane separator affected the efficiency of MFC start-up.•MFC with anion exchange membrane showed outstanding performance.•Geobacter was dominantly selected on anodes independently of membrane type.•Voltammograms indicated various anode surface coverage of redox components.
In this study, microbial fuel cells (MFCs) – operated with novel cation- and anion-exchange membranes, in particular AN-VPA 60 (CEM) and PSEBS DABCO (AEM) – were assessed comparatively with Nafion proton exchange membrane (PEM). The process characterization involved versatile electrochemical (polarization, electrochemical impedance spectroscopy – EIS, cyclic voltammetry – CV) and biological (microbial structure analysis) methods in order to reveal the influence of membrane-type during start-up. In fact, the use of AEM led to 2–5 times higher energy yields than CEM and PEM and the lowest MFC internal resistance (148 ± 17 Ω) by the end of start-up. Regardless of the membrane-type, Geobacter was dominantly enriched on all anodes. Besides, CV and EIS measurements implied higher anode surface coverage of redox compounds for MFCs and lower membrane resistance with AEM, respectively. As a result, AEM based on PSEBS DABCO could be found as a promising material to substitute Nafion.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30708331</pmid><doi>10.1016/j.biortech.2019.01.097</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3812-4490</orcidid><orcidid>https://orcid.org/0000-0002-7041-2962</orcidid><orcidid>https://orcid.org/0000-0003-1675-2744</orcidid><orcidid>https://orcid.org/0000-0003-2710-3547</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2019-04, Vol.278, p.279-286 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02623479v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | anion exchange anodes Bioelectrochemical system dielectric spectroscopy electrochemistry energy Environmental Sciences fuels Geobacter ion-exchange membranes Life Sciences Membrane Microbial community structure Microbial fuel cell Principal component analysis Separator technology voltammetry |
title | Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavior%20of%20two-chamber%20microbial%20electrochemical%20systems%20started-up%20with%20different%20ion-exchange%20membrane%20separators&rft.jtitle=Bioresource%20technology&rft.au=Ko%C3%B3k,%20L%C3%A1szl%C3%B3&rft.date=2019-04-01&rft.volume=278&rft.spage=279&rft.epage=286&rft.pages=279-286&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2019.01.097&rft_dat=%3Cproquest_hal_p%3E2179507695%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179507695&rft_id=info:pmid/30708331&rft_els_id=S096085241930121X&rfr_iscdi=true |