Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators

•The use of certain anion/cation exchange membranes in MFC is first presented.•The type of membrane separator affected the efficiency of MFC start-up.•MFC with anion exchange membrane showed outstanding performance.•Geobacter was dominantly selected on anodes independently of membrane type.•Voltammo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2019-04, Vol.278, p.279-286
Hauptverfasser: Koók, László, Quéméner, Elie Desmond-Le, Bakonyi, Péter, Zitka, Jan, Trably, Eric, Tóth, Gábor, Pavlovec, Lukas, Pientka, Zbynek, Bernet, Nicolas, Bélafi-Bakó, Katalin, Nemestóthy, Nándor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue
container_start_page 279
container_title Bioresource technology
container_volume 278
creator Koók, László
Quéméner, Elie Desmond-Le
Bakonyi, Péter
Zitka, Jan
Trably, Eric
Tóth, Gábor
Pavlovec, Lukas
Pientka, Zbynek
Bernet, Nicolas
Bélafi-Bakó, Katalin
Nemestóthy, Nándor
description •The use of certain anion/cation exchange membranes in MFC is first presented.•The type of membrane separator affected the efficiency of MFC start-up.•MFC with anion exchange membrane showed outstanding performance.•Geobacter was dominantly selected on anodes independently of membrane type.•Voltammograms indicated various anode surface coverage of redox components. In this study, microbial fuel cells (MFCs) – operated with novel cation- and anion-exchange membranes, in particular AN-VPA 60 (CEM) and PSEBS DABCO (AEM) – were assessed comparatively with Nafion proton exchange membrane (PEM). The process characterization involved versatile electrochemical (polarization, electrochemical impedance spectroscopy – EIS, cyclic voltammetry – CV) and biological (microbial structure analysis) methods in order to reveal the influence of membrane-type during start-up. In fact, the use of AEM led to 2–5 times higher energy yields than CEM and PEM and the lowest MFC internal resistance (148 ± 17 Ω) by the end of start-up. Regardless of the membrane-type, Geobacter was dominantly enriched on all anodes. Besides, CV and EIS measurements implied higher anode surface coverage of redox compounds for MFCs and lower membrane resistance with AEM, respectively. As a result, AEM based on PSEBS DABCO could be found as a promising material to substitute Nafion.
doi_str_mv 10.1016/j.biortech.2019.01.097
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02623479v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S096085241930121X</els_id><sourcerecordid>2179507695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-d7ea349e0aac5945081a5169e9314969e849196b3cda140799162eb09a4e00783</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS0EokvhK1Q-wiFh_CdxfKNUQJFW4gJny3EmxKskXmzvtv32eLVtrz2NZvSbN0_zCLliUDNg7edd3fsQM7qp5sB0DawGrV6RDeuUqLhW7WuyAd1C1TVcXpB3Ke0AQDDF35ILAQo6IdiG5K842WORomGk-S5UbrJLj5Eu3sXQeztTnNHlGNyEZVb69JAyLommbIuBoTrs6Z3PEx38OGLENVMf1grvi9L6F-mCSx_tijTh3kabQ0zvyZvRzgk_PNZL8uf7t983t9X214-fN9fbyknR5GpQaIXUCNa6RssGOmYb1mrUgkldaic1020v3GCZBKU1azn2oK1EANWJS_LprDvZ2eyjX2x8MMF6c3u9NacZ8JYLqfSRFfbjmd3H8O-AKZvFJ4fzXKyHQzKcc-g6pjV_GWVKN6Ba3RS0PaPlmSlFHJ9tMDCnIM3OPAVpTkEaYKYEWRavHm8c-gWH57Wn5Arw5QxgeeDRYzTJeVwdDj6WvMwQ_Es3_gPzL7Kl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2179507695</pqid></control><display><type>article</type><title>Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Koók, László ; Quéméner, Elie Desmond-Le ; Bakonyi, Péter ; Zitka, Jan ; Trably, Eric ; Tóth, Gábor ; Pavlovec, Lukas ; Pientka, Zbynek ; Bernet, Nicolas ; Bélafi-Bakó, Katalin ; Nemestóthy, Nándor</creator><creatorcontrib>Koók, László ; Quéméner, Elie Desmond-Le ; Bakonyi, Péter ; Zitka, Jan ; Trably, Eric ; Tóth, Gábor ; Pavlovec, Lukas ; Pientka, Zbynek ; Bernet, Nicolas ; Bélafi-Bakó, Katalin ; Nemestóthy, Nándor</creatorcontrib><description>•The use of certain anion/cation exchange membranes in MFC is first presented.•The type of membrane separator affected the efficiency of MFC start-up.•MFC with anion exchange membrane showed outstanding performance.•Geobacter was dominantly selected on anodes independently of membrane type.•Voltammograms indicated various anode surface coverage of redox components. In this study, microbial fuel cells (MFCs) – operated with novel cation- and anion-exchange membranes, in particular AN-VPA 60 (CEM) and PSEBS DABCO (AEM) – were assessed comparatively with Nafion proton exchange membrane (PEM). The process characterization involved versatile electrochemical (polarization, electrochemical impedance spectroscopy – EIS, cyclic voltammetry – CV) and biological (microbial structure analysis) methods in order to reveal the influence of membrane-type during start-up. In fact, the use of AEM led to 2–5 times higher energy yields than CEM and PEM and the lowest MFC internal resistance (148 ± 17 Ω) by the end of start-up. Regardless of the membrane-type, Geobacter was dominantly enriched on all anodes. Besides, CV and EIS measurements implied higher anode surface coverage of redox compounds for MFCs and lower membrane resistance with AEM, respectively. As a result, AEM based on PSEBS DABCO could be found as a promising material to substitute Nafion.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2019.01.097</identifier><identifier>PMID: 30708331</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>anion exchange ; anodes ; Bioelectrochemical system ; dielectric spectroscopy ; electrochemistry ; energy ; Environmental Sciences ; fuels ; Geobacter ; ion-exchange membranes ; Life Sciences ; Membrane ; Microbial community structure ; Microbial fuel cell ; Principal component analysis ; Separator ; technology ; voltammetry</subject><ispartof>Bioresource technology, 2019-04, Vol.278, p.279-286</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-d7ea349e0aac5945081a5169e9314969e849196b3cda140799162eb09a4e00783</citedby><cites>FETCH-LOGICAL-c435t-d7ea349e0aac5945081a5169e9314969e849196b3cda140799162eb09a4e00783</cites><orcidid>0000-0003-3812-4490 ; 0000-0002-7041-2962 ; 0000-0003-1675-2744 ; 0000-0003-2710-3547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2019.01.097$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3541,27915,27916,45986</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30708331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02623479$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Koók, László</creatorcontrib><creatorcontrib>Quéméner, Elie Desmond-Le</creatorcontrib><creatorcontrib>Bakonyi, Péter</creatorcontrib><creatorcontrib>Zitka, Jan</creatorcontrib><creatorcontrib>Trably, Eric</creatorcontrib><creatorcontrib>Tóth, Gábor</creatorcontrib><creatorcontrib>Pavlovec, Lukas</creatorcontrib><creatorcontrib>Pientka, Zbynek</creatorcontrib><creatorcontrib>Bernet, Nicolas</creatorcontrib><creatorcontrib>Bélafi-Bakó, Katalin</creatorcontrib><creatorcontrib>Nemestóthy, Nándor</creatorcontrib><title>Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>•The use of certain anion/cation exchange membranes in MFC is first presented.•The type of membrane separator affected the efficiency of MFC start-up.•MFC with anion exchange membrane showed outstanding performance.•Geobacter was dominantly selected on anodes independently of membrane type.•Voltammograms indicated various anode surface coverage of redox components. In this study, microbial fuel cells (MFCs) – operated with novel cation- and anion-exchange membranes, in particular AN-VPA 60 (CEM) and PSEBS DABCO (AEM) – were assessed comparatively with Nafion proton exchange membrane (PEM). The process characterization involved versatile electrochemical (polarization, electrochemical impedance spectroscopy – EIS, cyclic voltammetry – CV) and biological (microbial structure analysis) methods in order to reveal the influence of membrane-type during start-up. In fact, the use of AEM led to 2–5 times higher energy yields than CEM and PEM and the lowest MFC internal resistance (148 ± 17 Ω) by the end of start-up. Regardless of the membrane-type, Geobacter was dominantly enriched on all anodes. Besides, CV and EIS measurements implied higher anode surface coverage of redox compounds for MFCs and lower membrane resistance with AEM, respectively. As a result, AEM based on PSEBS DABCO could be found as a promising material to substitute Nafion.</description><subject>anion exchange</subject><subject>anodes</subject><subject>Bioelectrochemical system</subject><subject>dielectric spectroscopy</subject><subject>electrochemistry</subject><subject>energy</subject><subject>Environmental Sciences</subject><subject>fuels</subject><subject>Geobacter</subject><subject>ion-exchange membranes</subject><subject>Life Sciences</subject><subject>Membrane</subject><subject>Microbial community structure</subject><subject>Microbial fuel cell</subject><subject>Principal component analysis</subject><subject>Separator</subject><subject>technology</subject><subject>voltammetry</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS0EokvhK1Q-wiFh_CdxfKNUQJFW4gJny3EmxKskXmzvtv32eLVtrz2NZvSbN0_zCLliUDNg7edd3fsQM7qp5sB0DawGrV6RDeuUqLhW7WuyAd1C1TVcXpB3Ke0AQDDF35ILAQo6IdiG5K842WORomGk-S5UbrJLj5Eu3sXQeztTnNHlGNyEZVb69JAyLommbIuBoTrs6Z3PEx38OGLENVMf1grvi9L6F-mCSx_tijTh3kabQ0zvyZvRzgk_PNZL8uf7t983t9X214-fN9fbyknR5GpQaIXUCNa6RssGOmYb1mrUgkldaic1020v3GCZBKU1azn2oK1EANWJS_LprDvZ2eyjX2x8MMF6c3u9NacZ8JYLqfSRFfbjmd3H8O-AKZvFJ4fzXKyHQzKcc-g6pjV_GWVKN6Ba3RS0PaPlmSlFHJ9tMDCnIM3OPAVpTkEaYKYEWRavHm8c-gWH57Wn5Arw5QxgeeDRYzTJeVwdDj6WvMwQ_Es3_gPzL7Kl</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Koók, László</creator><creator>Quéméner, Elie Desmond-Le</creator><creator>Bakonyi, Péter</creator><creator>Zitka, Jan</creator><creator>Trably, Eric</creator><creator>Tóth, Gábor</creator><creator>Pavlovec, Lukas</creator><creator>Pientka, Zbynek</creator><creator>Bernet, Nicolas</creator><creator>Bélafi-Bakó, Katalin</creator><creator>Nemestóthy, Nándor</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3812-4490</orcidid><orcidid>https://orcid.org/0000-0002-7041-2962</orcidid><orcidid>https://orcid.org/0000-0003-1675-2744</orcidid><orcidid>https://orcid.org/0000-0003-2710-3547</orcidid></search><sort><creationdate>20190401</creationdate><title>Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators</title><author>Koók, László ; Quéméner, Elie Desmond-Le ; Bakonyi, Péter ; Zitka, Jan ; Trably, Eric ; Tóth, Gábor ; Pavlovec, Lukas ; Pientka, Zbynek ; Bernet, Nicolas ; Bélafi-Bakó, Katalin ; Nemestóthy, Nándor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-d7ea349e0aac5945081a5169e9314969e849196b3cda140799162eb09a4e00783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>anion exchange</topic><topic>anodes</topic><topic>Bioelectrochemical system</topic><topic>dielectric spectroscopy</topic><topic>electrochemistry</topic><topic>energy</topic><topic>Environmental Sciences</topic><topic>fuels</topic><topic>Geobacter</topic><topic>ion-exchange membranes</topic><topic>Life Sciences</topic><topic>Membrane</topic><topic>Microbial community structure</topic><topic>Microbial fuel cell</topic><topic>Principal component analysis</topic><topic>Separator</topic><topic>technology</topic><topic>voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koók, László</creatorcontrib><creatorcontrib>Quéméner, Elie Desmond-Le</creatorcontrib><creatorcontrib>Bakonyi, Péter</creatorcontrib><creatorcontrib>Zitka, Jan</creatorcontrib><creatorcontrib>Trably, Eric</creatorcontrib><creatorcontrib>Tóth, Gábor</creatorcontrib><creatorcontrib>Pavlovec, Lukas</creatorcontrib><creatorcontrib>Pientka, Zbynek</creatorcontrib><creatorcontrib>Bernet, Nicolas</creatorcontrib><creatorcontrib>Bélafi-Bakó, Katalin</creatorcontrib><creatorcontrib>Nemestóthy, Nándor</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koók, László</au><au>Quéméner, Elie Desmond-Le</au><au>Bakonyi, Péter</au><au>Zitka, Jan</au><au>Trably, Eric</au><au>Tóth, Gábor</au><au>Pavlovec, Lukas</au><au>Pientka, Zbynek</au><au>Bernet, Nicolas</au><au>Bélafi-Bakó, Katalin</au><au>Nemestóthy, Nándor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>278</volume><spage>279</spage><epage>286</epage><pages>279-286</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>•The use of certain anion/cation exchange membranes in MFC is first presented.•The type of membrane separator affected the efficiency of MFC start-up.•MFC with anion exchange membrane showed outstanding performance.•Geobacter was dominantly selected on anodes independently of membrane type.•Voltammograms indicated various anode surface coverage of redox components. In this study, microbial fuel cells (MFCs) – operated with novel cation- and anion-exchange membranes, in particular AN-VPA 60 (CEM) and PSEBS DABCO (AEM) – were assessed comparatively with Nafion proton exchange membrane (PEM). The process characterization involved versatile electrochemical (polarization, electrochemical impedance spectroscopy – EIS, cyclic voltammetry – CV) and biological (microbial structure analysis) methods in order to reveal the influence of membrane-type during start-up. In fact, the use of AEM led to 2–5 times higher energy yields than CEM and PEM and the lowest MFC internal resistance (148 ± 17 Ω) by the end of start-up. Regardless of the membrane-type, Geobacter was dominantly enriched on all anodes. Besides, CV and EIS measurements implied higher anode surface coverage of redox compounds for MFCs and lower membrane resistance with AEM, respectively. As a result, AEM based on PSEBS DABCO could be found as a promising material to substitute Nafion.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30708331</pmid><doi>10.1016/j.biortech.2019.01.097</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3812-4490</orcidid><orcidid>https://orcid.org/0000-0002-7041-2962</orcidid><orcidid>https://orcid.org/0000-0003-1675-2744</orcidid><orcidid>https://orcid.org/0000-0003-2710-3547</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2019-04, Vol.278, p.279-286
issn 0960-8524
1873-2976
language eng
recordid cdi_hal_primary_oai_HAL_hal_02623479v1
source Elsevier ScienceDirect Journals Complete
subjects anion exchange
anodes
Bioelectrochemical system
dielectric spectroscopy
electrochemistry
energy
Environmental Sciences
fuels
Geobacter
ion-exchange membranes
Life Sciences
Membrane
Microbial community structure
Microbial fuel cell
Principal component analysis
Separator
technology
voltammetry
title Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A57%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavior%20of%20two-chamber%20microbial%20electrochemical%20systems%20started-up%20with%20different%20ion-exchange%20membrane%20separators&rft.jtitle=Bioresource%20technology&rft.au=Ko%C3%B3k,%20L%C3%A1szl%C3%B3&rft.date=2019-04-01&rft.volume=278&rft.spage=279&rft.epage=286&rft.pages=279-286&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2019.01.097&rft_dat=%3Cproquest_hal_p%3E2179507695%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2179507695&rft_id=info:pmid/30708331&rft_els_id=S096085241930121X&rfr_iscdi=true