Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical
Sphingobacterium sp. T2 contains two extracellular manganese superoxide dismutase enzymes which exhibit unprecedented activity for lignin oxidation but via an unknown mechanism. Enzymatic treatment of lignin model compounds gave products whose structures were indicative of aryl–Cα oxidative cleavage...
Gespeichert in:
Veröffentlicht in: | ACS chemical biology 2018-10, Vol.13 (10), p.2920-2929 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2929 |
---|---|
container_issue | 10 |
container_start_page | 2920 |
container_title | ACS chemical biology |
container_volume | 13 |
creator | Rashid, Goran M. M Zhang, Xiaoyang Wilkinson, Rachael C Fülöp, Vilmos Cottyn, Betty Baumberger, Stéphanie Bugg, Timothy D. H |
description | Sphingobacterium sp. T2 contains two extracellular manganese superoxide dismutase enzymes which exhibit unprecedented activity for lignin oxidation but via an unknown mechanism. Enzymatic treatment of lignin model compounds gave products whose structures were indicative of aryl–Cα oxidative cleavage and demethylation, as well as alkene dihydroxylation and alcohol oxidation. 18O labeling studies on the SpMnSOD-catalyzed oxidation of lignin model compound guiaiacylglycerol-β-guaiacyl ether indicated that the an oxygen atom inserted by the enzyme is derived from superoxide or peroxide. Analysis of an alkali lignin treated by SpMnSOD1 by quantitative 31P NMR spectroscopy demonstrated 20–40% increases in phenolic and aliphatic OH content, consistent with lignin demethylation and some internal oxidative cleavage reactions. Assay for hydroxyl radical generation using a fluorometric hydroxyphenylfluorescein assay revealed the release of 4.1 molar equivalents of hydroxyl radical by SpMnSOD1. Four amino acid replacements in SpMnSOD1 were investigated, and A31H or Y27H site-directed mutant enzymes were found to show no lignin demethylation activity according to 31P NMR analysis. Structure determination of the A31H and Y27H mutant enzymes reveals the repositioning of an N-terminal protein loop, leading to widening of a solvent channel at the dimer interface, which would provide increased solvent access to the Mn center for hydroxyl radical generation. |
doi_str_mv | 10.1021/acschembio.8b00557 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02622195v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112214404</sourcerecordid><originalsourceid>FETCH-LOGICAL-a486t-3ada3bb2cc6f0e82b2c3dac6128fff0ccd59d0319a32b46f522618c8b0bd03373</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS1ERduBF2CBvITFDP7J77IaoIM0qFVb1taNczNx5cTBTkaE1-gL42qGYdeVr8_97lmcQ8h7zlacCf4ZdNAtdpVxq6JiLE3zV-SCp2myLEqZvz7NojwnlyE8MpbIrCjfkHPJRJIXubwgT_dDa_qdq0CP6M3U0TCs6IOgP6DfQY8B6f00oHe_TY30iwndNEIU1zCCnf9goGOL9CZuYTT7SGCHYzvb-HM9dQ29dXbuorOmW7PrTU_3Bug19uhPyGauo_9s6R3URoN9S84asAHfHd8F-fnt68N6s9zeXH9fX22XkBTZuJRQg6wqoXXWMCxEnGQNOuOiaJqGaV2nZc0kL0GKKsmaVIiMFzpGVUVZ5nJBPh18W7Bq8KYDPysHRm2utupZYyITgpfpnkf244EdvPs1YRhVZ4JGa2NGbgpKcB7RJIkRL4g4oNq7EDw2J2_O1HNx6n9x6lhcPPpw9J-qDuvTyb-mIrA6APFYPbrJ9zGalxz_AiVfqOo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112214404</pqid></control><display><type>article</type><title>Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical</title><source>MEDLINE</source><source>ACS Publications</source><creator>Rashid, Goran M. M ; Zhang, Xiaoyang ; Wilkinson, Rachael C ; Fülöp, Vilmos ; Cottyn, Betty ; Baumberger, Stéphanie ; Bugg, Timothy D. H</creator><creatorcontrib>Rashid, Goran M. M ; Zhang, Xiaoyang ; Wilkinson, Rachael C ; Fülöp, Vilmos ; Cottyn, Betty ; Baumberger, Stéphanie ; Bugg, Timothy D. H</creatorcontrib><description>Sphingobacterium sp. T2 contains two extracellular manganese superoxide dismutase enzymes which exhibit unprecedented activity for lignin oxidation but via an unknown mechanism. Enzymatic treatment of lignin model compounds gave products whose structures were indicative of aryl–Cα oxidative cleavage and demethylation, as well as alkene dihydroxylation and alcohol oxidation. 18O labeling studies on the SpMnSOD-catalyzed oxidation of lignin model compound guiaiacylglycerol-β-guaiacyl ether indicated that the an oxygen atom inserted by the enzyme is derived from superoxide or peroxide. Analysis of an alkali lignin treated by SpMnSOD1 by quantitative 31P NMR spectroscopy demonstrated 20–40% increases in phenolic and aliphatic OH content, consistent with lignin demethylation and some internal oxidative cleavage reactions. Assay for hydroxyl radical generation using a fluorometric hydroxyphenylfluorescein assay revealed the release of 4.1 molar equivalents of hydroxyl radical by SpMnSOD1. Four amino acid replacements in SpMnSOD1 were investigated, and A31H or Y27H site-directed mutant enzymes were found to show no lignin demethylation activity according to 31P NMR analysis. Structure determination of the A31H and Y27H mutant enzymes reveals the repositioning of an N-terminal protein loop, leading to widening of a solvent channel at the dimer interface, which would provide increased solvent access to the Mn center for hydroxyl radical generation.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/acschembio.8b00557</identifier><identifier>PMID: 30247873</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Catalysis ; Chemical and Process Engineering ; Demethylation ; Engineering Sciences ; Escherichia coli - enzymology ; Food engineering ; Hydrogen Peroxide - chemistry ; Hydroxyl Radical - chemistry ; Life Sciences ; Lignin - chemistry ; Models, Chemical ; Mutation ; Oxidation-Reduction ; Pseudomonas putida - enzymology ; Sequence Alignment ; Sphingobacterium - enzymology ; Superoxide Dismutase - chemistry ; Superoxide Dismutase - genetics ; Triticum - chemistry ; Vegetal Biology</subject><ispartof>ACS chemical biology, 2018-10, Vol.13 (10), p.2920-2929</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a486t-3ada3bb2cc6f0e82b2c3dac6128fff0ccd59d0319a32b46f522618c8b0bd03373</citedby><cites>FETCH-LOGICAL-a486t-3ada3bb2cc6f0e82b2c3dac6128fff0ccd59d0319a32b46f522618c8b0bd03373</cites><orcidid>0000-0003-3964-4498 ; 0000-0002-9550-4935 ; 0000-0003-4032-7959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschembio.8b00557$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschembio.8b00557$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30247873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02622195$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rashid, Goran M. M</creatorcontrib><creatorcontrib>Zhang, Xiaoyang</creatorcontrib><creatorcontrib>Wilkinson, Rachael C</creatorcontrib><creatorcontrib>Fülöp, Vilmos</creatorcontrib><creatorcontrib>Cottyn, Betty</creatorcontrib><creatorcontrib>Baumberger, Stéphanie</creatorcontrib><creatorcontrib>Bugg, Timothy D. H</creatorcontrib><title>Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>Sphingobacterium sp. T2 contains two extracellular manganese superoxide dismutase enzymes which exhibit unprecedented activity for lignin oxidation but via an unknown mechanism. Enzymatic treatment of lignin model compounds gave products whose structures were indicative of aryl–Cα oxidative cleavage and demethylation, as well as alkene dihydroxylation and alcohol oxidation. 18O labeling studies on the SpMnSOD-catalyzed oxidation of lignin model compound guiaiacylglycerol-β-guaiacyl ether indicated that the an oxygen atom inserted by the enzyme is derived from superoxide or peroxide. Analysis of an alkali lignin treated by SpMnSOD1 by quantitative 31P NMR spectroscopy demonstrated 20–40% increases in phenolic and aliphatic OH content, consistent with lignin demethylation and some internal oxidative cleavage reactions. Assay for hydroxyl radical generation using a fluorometric hydroxyphenylfluorescein assay revealed the release of 4.1 molar equivalents of hydroxyl radical by SpMnSOD1. Four amino acid replacements in SpMnSOD1 were investigated, and A31H or Y27H site-directed mutant enzymes were found to show no lignin demethylation activity according to 31P NMR analysis. Structure determination of the A31H and Y27H mutant enzymes reveals the repositioning of an N-terminal protein loop, leading to widening of a solvent channel at the dimer interface, which would provide increased solvent access to the Mn center for hydroxyl radical generation.</description><subject>Amino Acid Sequence</subject><subject>Catalysis</subject><subject>Chemical and Process Engineering</subject><subject>Demethylation</subject><subject>Engineering Sciences</subject><subject>Escherichia coli - enzymology</subject><subject>Food engineering</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Hydroxyl Radical - chemistry</subject><subject>Life Sciences</subject><subject>Lignin - chemistry</subject><subject>Models, Chemical</subject><subject>Mutation</subject><subject>Oxidation-Reduction</subject><subject>Pseudomonas putida - enzymology</subject><subject>Sequence Alignment</subject><subject>Sphingobacterium - enzymology</subject><subject>Superoxide Dismutase - chemistry</subject><subject>Superoxide Dismutase - genetics</subject><subject>Triticum - chemistry</subject><subject>Vegetal Biology</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS1ERduBF2CBvITFDP7J77IaoIM0qFVb1taNczNx5cTBTkaE1-gL42qGYdeVr8_97lmcQ8h7zlacCf4ZdNAtdpVxq6JiLE3zV-SCp2myLEqZvz7NojwnlyE8MpbIrCjfkHPJRJIXubwgT_dDa_qdq0CP6M3U0TCs6IOgP6DfQY8B6f00oHe_TY30iwndNEIU1zCCnf9goGOL9CZuYTT7SGCHYzvb-HM9dQ29dXbuorOmW7PrTU_3Bug19uhPyGauo_9s6R3URoN9S84asAHfHd8F-fnt68N6s9zeXH9fX22XkBTZuJRQg6wqoXXWMCxEnGQNOuOiaJqGaV2nZc0kL0GKKsmaVIiMFzpGVUVZ5nJBPh18W7Bq8KYDPysHRm2utupZYyITgpfpnkf244EdvPs1YRhVZ4JGa2NGbgpKcB7RJIkRL4g4oNq7EDw2J2_O1HNx6n9x6lhcPPpw9J-qDuvTyb-mIrA6APFYPbrJ9zGalxz_AiVfqOo</recordid><startdate>20181019</startdate><enddate>20181019</enddate><creator>Rashid, Goran M. M</creator><creator>Zhang, Xiaoyang</creator><creator>Wilkinson, Rachael C</creator><creator>Fülöp, Vilmos</creator><creator>Cottyn, Betty</creator><creator>Baumberger, Stéphanie</creator><creator>Bugg, Timothy D. H</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3964-4498</orcidid><orcidid>https://orcid.org/0000-0002-9550-4935</orcidid><orcidid>https://orcid.org/0000-0003-4032-7959</orcidid></search><sort><creationdate>20181019</creationdate><title>Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical</title><author>Rashid, Goran M. M ; Zhang, Xiaoyang ; Wilkinson, Rachael C ; Fülöp, Vilmos ; Cottyn, Betty ; Baumberger, Stéphanie ; Bugg, Timothy D. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a486t-3ada3bb2cc6f0e82b2c3dac6128fff0ccd59d0319a32b46f522618c8b0bd03373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino Acid Sequence</topic><topic>Catalysis</topic><topic>Chemical and Process Engineering</topic><topic>Demethylation</topic><topic>Engineering Sciences</topic><topic>Escherichia coli - enzymology</topic><topic>Food engineering</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Hydroxyl Radical - chemistry</topic><topic>Life Sciences</topic><topic>Lignin - chemistry</topic><topic>Models, Chemical</topic><topic>Mutation</topic><topic>Oxidation-Reduction</topic><topic>Pseudomonas putida - enzymology</topic><topic>Sequence Alignment</topic><topic>Sphingobacterium - enzymology</topic><topic>Superoxide Dismutase - chemistry</topic><topic>Superoxide Dismutase - genetics</topic><topic>Triticum - chemistry</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rashid, Goran M. M</creatorcontrib><creatorcontrib>Zhang, Xiaoyang</creatorcontrib><creatorcontrib>Wilkinson, Rachael C</creatorcontrib><creatorcontrib>Fülöp, Vilmos</creatorcontrib><creatorcontrib>Cottyn, Betty</creatorcontrib><creatorcontrib>Baumberger, Stéphanie</creatorcontrib><creatorcontrib>Bugg, Timothy D. H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rashid, Goran M. M</au><au>Zhang, Xiaoyang</au><au>Wilkinson, Rachael C</au><au>Fülöp, Vilmos</au><au>Cottyn, Betty</au><au>Baumberger, Stéphanie</au><au>Bugg, Timothy D. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2018-10-19</date><risdate>2018</risdate><volume>13</volume><issue>10</issue><spage>2920</spage><epage>2929</epage><pages>2920-2929</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>Sphingobacterium sp. T2 contains two extracellular manganese superoxide dismutase enzymes which exhibit unprecedented activity for lignin oxidation but via an unknown mechanism. Enzymatic treatment of lignin model compounds gave products whose structures were indicative of aryl–Cα oxidative cleavage and demethylation, as well as alkene dihydroxylation and alcohol oxidation. 18O labeling studies on the SpMnSOD-catalyzed oxidation of lignin model compound guiaiacylglycerol-β-guaiacyl ether indicated that the an oxygen atom inserted by the enzyme is derived from superoxide or peroxide. Analysis of an alkali lignin treated by SpMnSOD1 by quantitative 31P NMR spectroscopy demonstrated 20–40% increases in phenolic and aliphatic OH content, consistent with lignin demethylation and some internal oxidative cleavage reactions. Assay for hydroxyl radical generation using a fluorometric hydroxyphenylfluorescein assay revealed the release of 4.1 molar equivalents of hydroxyl radical by SpMnSOD1. Four amino acid replacements in SpMnSOD1 were investigated, and A31H or Y27H site-directed mutant enzymes were found to show no lignin demethylation activity according to 31P NMR analysis. Structure determination of the A31H and Y27H mutant enzymes reveals the repositioning of an N-terminal protein loop, leading to widening of a solvent channel at the dimer interface, which would provide increased solvent access to the Mn center for hydroxyl radical generation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30247873</pmid><doi>10.1021/acschembio.8b00557</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3964-4498</orcidid><orcidid>https://orcid.org/0000-0002-9550-4935</orcidid><orcidid>https://orcid.org/0000-0003-4032-7959</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-8929 |
ispartof | ACS chemical biology, 2018-10, Vol.13 (10), p.2920-2929 |
issn | 1554-8929 1554-8937 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02622195v1 |
source | MEDLINE; ACS Publications |
subjects | Amino Acid Sequence Catalysis Chemical and Process Engineering Demethylation Engineering Sciences Escherichia coli - enzymology Food engineering Hydrogen Peroxide - chemistry Hydroxyl Radical - chemistry Life Sciences Lignin - chemistry Models, Chemical Mutation Oxidation-Reduction Pseudomonas putida - enzymology Sequence Alignment Sphingobacterium - enzymology Superoxide Dismutase - chemistry Superoxide Dismutase - genetics Triticum - chemistry Vegetal Biology |
title | Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sphingobacterium%20sp.%20T2%20Manganese%20Superoxide%20Dismutase%20Catalyzes%20the%20Oxidative%20Demethylation%20of%20Polymeric%20Lignin%20via%20Generation%20of%20Hydroxyl%20Radical&rft.jtitle=ACS%20chemical%20biology&rft.au=Rashid,%20Goran%20M.%20M&rft.date=2018-10-19&rft.volume=13&rft.issue=10&rft.spage=2920&rft.epage=2929&rft.pages=2920-2929&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/acschembio.8b00557&rft_dat=%3Cproquest_hal_p%3E2112214404%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112214404&rft_id=info:pmid/30247873&rfr_iscdi=true |