Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical

Sphingobacterium sp. T2 contains two extracellular manganese superoxide dismutase enzymes which exhibit unprecedented activity for lignin oxidation but via an unknown mechanism. Enzymatic treatment of lignin model compounds gave products whose structures were indicative of aryl–Cα oxidative cleavage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2018-10, Vol.13 (10), p.2920-2929
Hauptverfasser: Rashid, Goran M. M, Zhang, Xiaoyang, Wilkinson, Rachael C, Fülöp, Vilmos, Cottyn, Betty, Baumberger, Stéphanie, Bugg, Timothy D. H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2929
container_issue 10
container_start_page 2920
container_title ACS chemical biology
container_volume 13
creator Rashid, Goran M. M
Zhang, Xiaoyang
Wilkinson, Rachael C
Fülöp, Vilmos
Cottyn, Betty
Baumberger, Stéphanie
Bugg, Timothy D. H
description Sphingobacterium sp. T2 contains two extracellular manganese superoxide dismutase enzymes which exhibit unprecedented activity for lignin oxidation but via an unknown mechanism. Enzymatic treatment of lignin model compounds gave products whose structures were indicative of aryl–Cα oxidative cleavage and demethylation, as well as alkene dihydroxylation and alcohol oxidation. 18O labeling studies on the SpMnSOD-catalyzed oxidation of lignin model compound guiaiacylglycerol-β-guaiacyl ether indicated that the an oxygen atom inserted by the enzyme is derived from superoxide or peroxide. Analysis of an alkali lignin treated by SpMnSOD1 by quantitative 31P NMR spectroscopy demonstrated 20–40% increases in phenolic and aliphatic OH content, consistent with lignin demethylation and some internal oxidative cleavage reactions. Assay for hydroxyl radical generation using a fluorometric hydroxyphenyl­fluorescein assay revealed the release of 4.1 molar equivalents of hydroxyl radical by SpMnSOD1. Four amino acid replacements in SpMnSOD1 were investigated, and A31H or Y27H site-directed mutant enzymes were found to show no lignin demethylation activity according to 31P NMR analysis. Structure determination of the A31H and Y27H mutant enzymes reveals the repositioning of an N-terminal protein loop, leading to widening of a solvent channel at the dimer interface, which would provide increased solvent access to the Mn center for hydroxyl radical generation.
doi_str_mv 10.1021/acschembio.8b00557
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02622195v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112214404</sourcerecordid><originalsourceid>FETCH-LOGICAL-a486t-3ada3bb2cc6f0e82b2c3dac6128fff0ccd59d0319a32b46f522618c8b0bd03373</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS1ERduBF2CBvITFDP7J77IaoIM0qFVb1taNczNx5cTBTkaE1-gL42qGYdeVr8_97lmcQ8h7zlacCf4ZdNAtdpVxq6JiLE3zV-SCp2myLEqZvz7NojwnlyE8MpbIrCjfkHPJRJIXubwgT_dDa_qdq0CP6M3U0TCs6IOgP6DfQY8B6f00oHe_TY30iwndNEIU1zCCnf9goGOL9CZuYTT7SGCHYzvb-HM9dQ29dXbuorOmW7PrTU_3Bug19uhPyGauo_9s6R3URoN9S84asAHfHd8F-fnt68N6s9zeXH9fX22XkBTZuJRQg6wqoXXWMCxEnGQNOuOiaJqGaV2nZc0kL0GKKsmaVIiMFzpGVUVZ5nJBPh18W7Bq8KYDPysHRm2utupZYyITgpfpnkf244EdvPs1YRhVZ4JGa2NGbgpKcB7RJIkRL4g4oNq7EDw2J2_O1HNx6n9x6lhcPPpw9J-qDuvTyb-mIrA6APFYPbrJ9zGalxz_AiVfqOo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112214404</pqid></control><display><type>article</type><title>Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical</title><source>MEDLINE</source><source>ACS Publications</source><creator>Rashid, Goran M. M ; Zhang, Xiaoyang ; Wilkinson, Rachael C ; Fülöp, Vilmos ; Cottyn, Betty ; Baumberger, Stéphanie ; Bugg, Timothy D. H</creator><creatorcontrib>Rashid, Goran M. M ; Zhang, Xiaoyang ; Wilkinson, Rachael C ; Fülöp, Vilmos ; Cottyn, Betty ; Baumberger, Stéphanie ; Bugg, Timothy D. H</creatorcontrib><description>Sphingobacterium sp. T2 contains two extracellular manganese superoxide dismutase enzymes which exhibit unprecedented activity for lignin oxidation but via an unknown mechanism. Enzymatic treatment of lignin model compounds gave products whose structures were indicative of aryl–Cα oxidative cleavage and demethylation, as well as alkene dihydroxylation and alcohol oxidation. 18O labeling studies on the SpMnSOD-catalyzed oxidation of lignin model compound guiaiacylglycerol-β-guaiacyl ether indicated that the an oxygen atom inserted by the enzyme is derived from superoxide or peroxide. Analysis of an alkali lignin treated by SpMnSOD1 by quantitative 31P NMR spectroscopy demonstrated 20–40% increases in phenolic and aliphatic OH content, consistent with lignin demethylation and some internal oxidative cleavage reactions. Assay for hydroxyl radical generation using a fluorometric hydroxyphenyl­fluorescein assay revealed the release of 4.1 molar equivalents of hydroxyl radical by SpMnSOD1. Four amino acid replacements in SpMnSOD1 were investigated, and A31H or Y27H site-directed mutant enzymes were found to show no lignin demethylation activity according to 31P NMR analysis. Structure determination of the A31H and Y27H mutant enzymes reveals the repositioning of an N-terminal protein loop, leading to widening of a solvent channel at the dimer interface, which would provide increased solvent access to the Mn center for hydroxyl radical generation.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/acschembio.8b00557</identifier><identifier>PMID: 30247873</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Catalysis ; Chemical and Process Engineering ; Demethylation ; Engineering Sciences ; Escherichia coli - enzymology ; Food engineering ; Hydrogen Peroxide - chemistry ; Hydroxyl Radical - chemistry ; Life Sciences ; Lignin - chemistry ; Models, Chemical ; Mutation ; Oxidation-Reduction ; Pseudomonas putida - enzymology ; Sequence Alignment ; Sphingobacterium - enzymology ; Superoxide Dismutase - chemistry ; Superoxide Dismutase - genetics ; Triticum - chemistry ; Vegetal Biology</subject><ispartof>ACS chemical biology, 2018-10, Vol.13 (10), p.2920-2929</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a486t-3ada3bb2cc6f0e82b2c3dac6128fff0ccd59d0319a32b46f522618c8b0bd03373</citedby><cites>FETCH-LOGICAL-a486t-3ada3bb2cc6f0e82b2c3dac6128fff0ccd59d0319a32b46f522618c8b0bd03373</cites><orcidid>0000-0003-3964-4498 ; 0000-0002-9550-4935 ; 0000-0003-4032-7959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschembio.8b00557$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschembio.8b00557$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30247873$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02622195$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rashid, Goran M. M</creatorcontrib><creatorcontrib>Zhang, Xiaoyang</creatorcontrib><creatorcontrib>Wilkinson, Rachael C</creatorcontrib><creatorcontrib>Fülöp, Vilmos</creatorcontrib><creatorcontrib>Cottyn, Betty</creatorcontrib><creatorcontrib>Baumberger, Stéphanie</creatorcontrib><creatorcontrib>Bugg, Timothy D. H</creatorcontrib><title>Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>Sphingobacterium sp. T2 contains two extracellular manganese superoxide dismutase enzymes which exhibit unprecedented activity for lignin oxidation but via an unknown mechanism. Enzymatic treatment of lignin model compounds gave products whose structures were indicative of aryl–Cα oxidative cleavage and demethylation, as well as alkene dihydroxylation and alcohol oxidation. 18O labeling studies on the SpMnSOD-catalyzed oxidation of lignin model compound guiaiacylglycerol-β-guaiacyl ether indicated that the an oxygen atom inserted by the enzyme is derived from superoxide or peroxide. Analysis of an alkali lignin treated by SpMnSOD1 by quantitative 31P NMR spectroscopy demonstrated 20–40% increases in phenolic and aliphatic OH content, consistent with lignin demethylation and some internal oxidative cleavage reactions. Assay for hydroxyl radical generation using a fluorometric hydroxyphenyl­fluorescein assay revealed the release of 4.1 molar equivalents of hydroxyl radical by SpMnSOD1. Four amino acid replacements in SpMnSOD1 were investigated, and A31H or Y27H site-directed mutant enzymes were found to show no lignin demethylation activity according to 31P NMR analysis. Structure determination of the A31H and Y27H mutant enzymes reveals the repositioning of an N-terminal protein loop, leading to widening of a solvent channel at the dimer interface, which would provide increased solvent access to the Mn center for hydroxyl radical generation.</description><subject>Amino Acid Sequence</subject><subject>Catalysis</subject><subject>Chemical and Process Engineering</subject><subject>Demethylation</subject><subject>Engineering Sciences</subject><subject>Escherichia coli - enzymology</subject><subject>Food engineering</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Hydroxyl Radical - chemistry</subject><subject>Life Sciences</subject><subject>Lignin - chemistry</subject><subject>Models, Chemical</subject><subject>Mutation</subject><subject>Oxidation-Reduction</subject><subject>Pseudomonas putida - enzymology</subject><subject>Sequence Alignment</subject><subject>Sphingobacterium - enzymology</subject><subject>Superoxide Dismutase - chemistry</subject><subject>Superoxide Dismutase - genetics</subject><subject>Triticum - chemistry</subject><subject>Vegetal Biology</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS1ERduBF2CBvITFDP7J77IaoIM0qFVb1taNczNx5cTBTkaE1-gL42qGYdeVr8_97lmcQ8h7zlacCf4ZdNAtdpVxq6JiLE3zV-SCp2myLEqZvz7NojwnlyE8MpbIrCjfkHPJRJIXubwgT_dDa_qdq0CP6M3U0TCs6IOgP6DfQY8B6f00oHe_TY30iwndNEIU1zCCnf9goGOL9CZuYTT7SGCHYzvb-HM9dQ29dXbuorOmW7PrTU_3Bug19uhPyGauo_9s6R3URoN9S84asAHfHd8F-fnt68N6s9zeXH9fX22XkBTZuJRQg6wqoXXWMCxEnGQNOuOiaJqGaV2nZc0kL0GKKsmaVIiMFzpGVUVZ5nJBPh18W7Bq8KYDPysHRm2utupZYyITgpfpnkf244EdvPs1YRhVZ4JGa2NGbgpKcB7RJIkRL4g4oNq7EDw2J2_O1HNx6n9x6lhcPPpw9J-qDuvTyb-mIrA6APFYPbrJ9zGalxz_AiVfqOo</recordid><startdate>20181019</startdate><enddate>20181019</enddate><creator>Rashid, Goran M. M</creator><creator>Zhang, Xiaoyang</creator><creator>Wilkinson, Rachael C</creator><creator>Fülöp, Vilmos</creator><creator>Cottyn, Betty</creator><creator>Baumberger, Stéphanie</creator><creator>Bugg, Timothy D. H</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3964-4498</orcidid><orcidid>https://orcid.org/0000-0002-9550-4935</orcidid><orcidid>https://orcid.org/0000-0003-4032-7959</orcidid></search><sort><creationdate>20181019</creationdate><title>Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical</title><author>Rashid, Goran M. M ; Zhang, Xiaoyang ; Wilkinson, Rachael C ; Fülöp, Vilmos ; Cottyn, Betty ; Baumberger, Stéphanie ; Bugg, Timothy D. H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a486t-3ada3bb2cc6f0e82b2c3dac6128fff0ccd59d0319a32b46f522618c8b0bd03373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino Acid Sequence</topic><topic>Catalysis</topic><topic>Chemical and Process Engineering</topic><topic>Demethylation</topic><topic>Engineering Sciences</topic><topic>Escherichia coli - enzymology</topic><topic>Food engineering</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Hydroxyl Radical - chemistry</topic><topic>Life Sciences</topic><topic>Lignin - chemistry</topic><topic>Models, Chemical</topic><topic>Mutation</topic><topic>Oxidation-Reduction</topic><topic>Pseudomonas putida - enzymology</topic><topic>Sequence Alignment</topic><topic>Sphingobacterium - enzymology</topic><topic>Superoxide Dismutase - chemistry</topic><topic>Superoxide Dismutase - genetics</topic><topic>Triticum - chemistry</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rashid, Goran M. M</creatorcontrib><creatorcontrib>Zhang, Xiaoyang</creatorcontrib><creatorcontrib>Wilkinson, Rachael C</creatorcontrib><creatorcontrib>Fülöp, Vilmos</creatorcontrib><creatorcontrib>Cottyn, Betty</creatorcontrib><creatorcontrib>Baumberger, Stéphanie</creatorcontrib><creatorcontrib>Bugg, Timothy D. H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rashid, Goran M. M</au><au>Zhang, Xiaoyang</au><au>Wilkinson, Rachael C</au><au>Fülöp, Vilmos</au><au>Cottyn, Betty</au><au>Baumberger, Stéphanie</au><au>Bugg, Timothy D. H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2018-10-19</date><risdate>2018</risdate><volume>13</volume><issue>10</issue><spage>2920</spage><epage>2929</epage><pages>2920-2929</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>Sphingobacterium sp. T2 contains two extracellular manganese superoxide dismutase enzymes which exhibit unprecedented activity for lignin oxidation but via an unknown mechanism. Enzymatic treatment of lignin model compounds gave products whose structures were indicative of aryl–Cα oxidative cleavage and demethylation, as well as alkene dihydroxylation and alcohol oxidation. 18O labeling studies on the SpMnSOD-catalyzed oxidation of lignin model compound guiaiacylglycerol-β-guaiacyl ether indicated that the an oxygen atom inserted by the enzyme is derived from superoxide or peroxide. Analysis of an alkali lignin treated by SpMnSOD1 by quantitative 31P NMR spectroscopy demonstrated 20–40% increases in phenolic and aliphatic OH content, consistent with lignin demethylation and some internal oxidative cleavage reactions. Assay for hydroxyl radical generation using a fluorometric hydroxyphenyl­fluorescein assay revealed the release of 4.1 molar equivalents of hydroxyl radical by SpMnSOD1. Four amino acid replacements in SpMnSOD1 were investigated, and A31H or Y27H site-directed mutant enzymes were found to show no lignin demethylation activity according to 31P NMR analysis. Structure determination of the A31H and Y27H mutant enzymes reveals the repositioning of an N-terminal protein loop, leading to widening of a solvent channel at the dimer interface, which would provide increased solvent access to the Mn center for hydroxyl radical generation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30247873</pmid><doi>10.1021/acschembio.8b00557</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3964-4498</orcidid><orcidid>https://orcid.org/0000-0002-9550-4935</orcidid><orcidid>https://orcid.org/0000-0003-4032-7959</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8929
ispartof ACS chemical biology, 2018-10, Vol.13 (10), p.2920-2929
issn 1554-8929
1554-8937
language eng
recordid cdi_hal_primary_oai_HAL_hal_02622195v1
source MEDLINE; ACS Publications
subjects Amino Acid Sequence
Catalysis
Chemical and Process Engineering
Demethylation
Engineering Sciences
Escherichia coli - enzymology
Food engineering
Hydrogen Peroxide - chemistry
Hydroxyl Radical - chemistry
Life Sciences
Lignin - chemistry
Models, Chemical
Mutation
Oxidation-Reduction
Pseudomonas putida - enzymology
Sequence Alignment
Sphingobacterium - enzymology
Superoxide Dismutase - chemistry
Superoxide Dismutase - genetics
Triticum - chemistry
Vegetal Biology
title Sphingobacterium sp. T2 Manganese Superoxide Dismutase Catalyzes the Oxidative Demethylation of Polymeric Lignin via Generation of Hydroxyl Radical
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sphingobacterium%20sp.%20T2%20Manganese%20Superoxide%20Dismutase%20Catalyzes%20the%20Oxidative%20Demethylation%20of%20Polymeric%20Lignin%20via%20Generation%20of%20Hydroxyl%20Radical&rft.jtitle=ACS%20chemical%20biology&rft.au=Rashid,%20Goran%20M.%20M&rft.date=2018-10-19&rft.volume=13&rft.issue=10&rft.spage=2920&rft.epage=2929&rft.pages=2920-2929&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/acschembio.8b00557&rft_dat=%3Cproquest_hal_p%3E2112214404%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112214404&rft_id=info:pmid/30247873&rfr_iscdi=true