Flash microwave pressing of zirconia
Microwave Pressing is a promising way to reduce microwave sintering temperatures and stabilize microwave powder materials processing. A multiphysics simulation was conducted of the regulated pressure‐assisted microwave cavity. This simulation took into consideration resonance phenomena and the nonli...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2020-08, Vol.103 (8), p.4110-4121 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4121 |
---|---|
container_issue | 8 |
container_start_page | 4110 |
container_title | Journal of the American Ceramic Society |
container_volume | 103 |
creator | Manière, Charles Lee, Geuntak Torresani, Elisa Gerling, John F. Yakovlev, Vadim V. Martin, Darold Olevsky, Eugene A. |
description | Microwave Pressing is a promising way to reduce microwave sintering temperatures and stabilize microwave powder materials processing. A multiphysics simulation was conducted of the regulated pressure‐assisted microwave cavity. This simulation took into consideration resonance phenomena and the nonlinear temperature‐dependent material parameters of zirconia. The intrinsic behaviors of microwave systems and zirconia make the regulation of the microwave pressing difficult. However, the same phenomena can be used to activate flash sintering. Flash microwave sintering uses high electric fields of the resonant microwave profile, the Negative Temperature Behavior (NTC) of zirconia resistivity, and the mechanical pressure applied to the powder via a die compaction configuration. The resulting flash microwave pressing still needs improvement in terms of the processed material structure homogeneity, but it has the capacity to become the fastest sintering treatment as it allows room temperature activation where the total process time only takes a few seconds. In addition, this 10‐20 seconds processing technique has shown good potential for improving the transparency of alumina presintered specimens. |
doi_str_mv | 10.1111/jace.17072 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02616768v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417768704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4082-5ba1e2fe1b56957c4914654cdaf4011c4bce812c0fc12818377046052e02569d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsXP8GCXhS2zqT5t8dSWqsUvOg5ZNOsTdl2a2Jb6qc364pH5zLM8HuPmUfINcIAUz2sjHUDlCDpCekh55jTAsUp6QEAzaWicE4uYlylEQvFeuR2Wpu4zNbehuZg9i7bBhej37xnTZV9-WCbjTeX5KwydXRXv71P3qaT1_Esn788Po1H89wyUDTnpUFHK4clFwWXlhXIBGd2YSoGiJaV1imkFiqLVKEaSglMAKcOaFIshn1y1_kuTa23wa9NOOrGeD0bzXW7AypQSKH2mNibjt2G5mPn4qdeNbuwSedpylAmKJkn6r6j0nsxBlf92SLoNjHdJqZ_EkswdvDB1-74D6mfR-NJp_kG0plp8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417768704</pqid></control><display><type>article</type><title>Flash microwave pressing of zirconia</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Manière, Charles ; Lee, Geuntak ; Torresani, Elisa ; Gerling, John F. ; Yakovlev, Vadim V. ; Martin, Darold ; Olevsky, Eugene A.</creator><creatorcontrib>Manière, Charles ; Lee, Geuntak ; Torresani, Elisa ; Gerling, John F. ; Yakovlev, Vadim V. ; Martin, Darold ; Olevsky, Eugene A.</creatorcontrib><description>Microwave Pressing is a promising way to reduce microwave sintering temperatures and stabilize microwave powder materials processing. A multiphysics simulation was conducted of the regulated pressure‐assisted microwave cavity. This simulation took into consideration resonance phenomena and the nonlinear temperature‐dependent material parameters of zirconia. The intrinsic behaviors of microwave systems and zirconia make the regulation of the microwave pressing difficult. However, the same phenomena can be used to activate flash sintering. Flash microwave sintering uses high electric fields of the resonant microwave profile, the Negative Temperature Behavior (NTC) of zirconia resistivity, and the mechanical pressure applied to the powder via a die compaction configuration. The resulting flash microwave pressing still needs improvement in terms of the processed material structure homogeneity, but it has the capacity to become the fastest sintering treatment as it allows room temperature activation where the total process time only takes a few seconds. In addition, this 10‐20 seconds processing technique has shown good potential for improving the transparency of alumina presintered specimens.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17072</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Chemical and Process Engineering ; Chemical Sciences ; Electric fields ; Engineering Sciences ; flash sintering ; Homogeneity ; Material chemistry ; Materials processing ; Mechanics ; Mechanics of materials ; Microwave sintering ; Pressing ; pressure‐assisted sintering ; Resistance sintering ; resonant cavity ; Room temperature ; simulation ; Sintering ; Temperature dependence ; transparent ceramics ; Zirconium dioxide</subject><ispartof>Journal of the American Ceramic Society, 2020-08, Vol.103 (8), p.4110-4121</ispartof><rights>2020 The American Ceramic Society</rights><rights>2020 American Ceramic Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4082-5ba1e2fe1b56957c4914654cdaf4011c4bce812c0fc12818377046052e02569d3</citedby><cites>FETCH-LOGICAL-c4082-5ba1e2fe1b56957c4914654cdaf4011c4bce812c0fc12818377046052e02569d3</cites><orcidid>0000-0002-6342-7090 ; 0000-0003-0073-9772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17072$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17072$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-02616768$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Manière, Charles</creatorcontrib><creatorcontrib>Lee, Geuntak</creatorcontrib><creatorcontrib>Torresani, Elisa</creatorcontrib><creatorcontrib>Gerling, John F.</creatorcontrib><creatorcontrib>Yakovlev, Vadim V.</creatorcontrib><creatorcontrib>Martin, Darold</creatorcontrib><creatorcontrib>Olevsky, Eugene A.</creatorcontrib><title>Flash microwave pressing of zirconia</title><title>Journal of the American Ceramic Society</title><description>Microwave Pressing is a promising way to reduce microwave sintering temperatures and stabilize microwave powder materials processing. A multiphysics simulation was conducted of the regulated pressure‐assisted microwave cavity. This simulation took into consideration resonance phenomena and the nonlinear temperature‐dependent material parameters of zirconia. The intrinsic behaviors of microwave systems and zirconia make the regulation of the microwave pressing difficult. However, the same phenomena can be used to activate flash sintering. Flash microwave sintering uses high electric fields of the resonant microwave profile, the Negative Temperature Behavior (NTC) of zirconia resistivity, and the mechanical pressure applied to the powder via a die compaction configuration. The resulting flash microwave pressing still needs improvement in terms of the processed material structure homogeneity, but it has the capacity to become the fastest sintering treatment as it allows room temperature activation where the total process time only takes a few seconds. In addition, this 10‐20 seconds processing technique has shown good potential for improving the transparency of alumina presintered specimens.</description><subject>Aluminum oxide</subject><subject>Chemical and Process Engineering</subject><subject>Chemical Sciences</subject><subject>Electric fields</subject><subject>Engineering Sciences</subject><subject>flash sintering</subject><subject>Homogeneity</subject><subject>Material chemistry</subject><subject>Materials processing</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Microwave sintering</subject><subject>Pressing</subject><subject>pressure‐assisted sintering</subject><subject>Resistance sintering</subject><subject>resonant cavity</subject><subject>Room temperature</subject><subject>simulation</subject><subject>Sintering</subject><subject>Temperature dependence</subject><subject>transparent ceramics</subject><subject>Zirconium dioxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsXP8GCXhS2zqT5t8dSWqsUvOg5ZNOsTdl2a2Jb6qc364pH5zLM8HuPmUfINcIAUz2sjHUDlCDpCekh55jTAsUp6QEAzaWicE4uYlylEQvFeuR2Wpu4zNbehuZg9i7bBhej37xnTZV9-WCbjTeX5KwydXRXv71P3qaT1_Esn788Po1H89wyUDTnpUFHK4clFwWXlhXIBGd2YSoGiJaV1imkFiqLVKEaSglMAKcOaFIshn1y1_kuTa23wa9NOOrGeD0bzXW7AypQSKH2mNibjt2G5mPn4qdeNbuwSedpylAmKJkn6r6j0nsxBlf92SLoNjHdJqZ_EkswdvDB1-74D6mfR-NJp_kG0plp8w</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Manière, Charles</creator><creator>Lee, Geuntak</creator><creator>Torresani, Elisa</creator><creator>Gerling, John F.</creator><creator>Yakovlev, Vadim V.</creator><creator>Martin, Darold</creator><creator>Olevsky, Eugene A.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6342-7090</orcidid><orcidid>https://orcid.org/0000-0003-0073-9772</orcidid></search><sort><creationdate>202008</creationdate><title>Flash microwave pressing of zirconia</title><author>Manière, Charles ; Lee, Geuntak ; Torresani, Elisa ; Gerling, John F. ; Yakovlev, Vadim V. ; Martin, Darold ; Olevsky, Eugene A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4082-5ba1e2fe1b56957c4914654cdaf4011c4bce812c0fc12818377046052e02569d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Chemical and Process Engineering</topic><topic>Chemical Sciences</topic><topic>Electric fields</topic><topic>Engineering Sciences</topic><topic>flash sintering</topic><topic>Homogeneity</topic><topic>Material chemistry</topic><topic>Materials processing</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Microwave sintering</topic><topic>Pressing</topic><topic>pressure‐assisted sintering</topic><topic>Resistance sintering</topic><topic>resonant cavity</topic><topic>Room temperature</topic><topic>simulation</topic><topic>Sintering</topic><topic>Temperature dependence</topic><topic>transparent ceramics</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manière, Charles</creatorcontrib><creatorcontrib>Lee, Geuntak</creatorcontrib><creatorcontrib>Torresani, Elisa</creatorcontrib><creatorcontrib>Gerling, John F.</creatorcontrib><creatorcontrib>Yakovlev, Vadim V.</creatorcontrib><creatorcontrib>Martin, Darold</creatorcontrib><creatorcontrib>Olevsky, Eugene A.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manière, Charles</au><au>Lee, Geuntak</au><au>Torresani, Elisa</au><au>Gerling, John F.</au><au>Yakovlev, Vadim V.</au><au>Martin, Darold</au><au>Olevsky, Eugene A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flash microwave pressing of zirconia</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2020-08</date><risdate>2020</risdate><volume>103</volume><issue>8</issue><spage>4110</spage><epage>4121</epage><pages>4110-4121</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Microwave Pressing is a promising way to reduce microwave sintering temperatures and stabilize microwave powder materials processing. A multiphysics simulation was conducted of the regulated pressure‐assisted microwave cavity. This simulation took into consideration resonance phenomena and the nonlinear temperature‐dependent material parameters of zirconia. The intrinsic behaviors of microwave systems and zirconia make the regulation of the microwave pressing difficult. However, the same phenomena can be used to activate flash sintering. Flash microwave sintering uses high electric fields of the resonant microwave profile, the Negative Temperature Behavior (NTC) of zirconia resistivity, and the mechanical pressure applied to the powder via a die compaction configuration. The resulting flash microwave pressing still needs improvement in terms of the processed material structure homogeneity, but it has the capacity to become the fastest sintering treatment as it allows room temperature activation where the total process time only takes a few seconds. In addition, this 10‐20 seconds processing technique has shown good potential for improving the transparency of alumina presintered specimens.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17072</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6342-7090</orcidid><orcidid>https://orcid.org/0000-0003-0073-9772</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2020-08, Vol.103 (8), p.4110-4121 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02616768v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aluminum oxide Chemical and Process Engineering Chemical Sciences Electric fields Engineering Sciences flash sintering Homogeneity Material chemistry Materials processing Mechanics Mechanics of materials Microwave sintering Pressing pressure‐assisted sintering Resistance sintering resonant cavity Room temperature simulation Sintering Temperature dependence transparent ceramics Zirconium dioxide |
title | Flash microwave pressing of zirconia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flash%20microwave%20pressing%20of%20zirconia&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Mani%C3%A8re,%20Charles&rft.date=2020-08&rft.volume=103&rft.issue=8&rft.spage=4110&rft.epage=4121&rft.pages=4110-4121&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17072&rft_dat=%3Cproquest_hal_p%3E2417768704%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417768704&rft_id=info:pmid/&rfr_iscdi=true |