Flash microwave pressing of zirconia

Microwave Pressing is a promising way to reduce microwave sintering temperatures and stabilize microwave powder materials processing. A multiphysics simulation was conducted of the regulated pressure‐assisted microwave cavity. This simulation took into consideration resonance phenomena and the nonli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2020-08, Vol.103 (8), p.4110-4121
Hauptverfasser: Manière, Charles, Lee, Geuntak, Torresani, Elisa, Gerling, John F., Yakovlev, Vadim V., Martin, Darold, Olevsky, Eugene A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4121
container_issue 8
container_start_page 4110
container_title Journal of the American Ceramic Society
container_volume 103
creator Manière, Charles
Lee, Geuntak
Torresani, Elisa
Gerling, John F.
Yakovlev, Vadim V.
Martin, Darold
Olevsky, Eugene A.
description Microwave Pressing is a promising way to reduce microwave sintering temperatures and stabilize microwave powder materials processing. A multiphysics simulation was conducted of the regulated pressure‐assisted microwave cavity. This simulation took into consideration resonance phenomena and the nonlinear temperature‐dependent material parameters of zirconia. The intrinsic behaviors of microwave systems and zirconia make the regulation of the microwave pressing difficult. However, the same phenomena can be used to activate flash sintering. Flash microwave sintering uses high electric fields of the resonant microwave profile, the Negative Temperature Behavior (NTC) of zirconia resistivity, and the mechanical pressure applied to the powder via a die compaction configuration. The resulting flash microwave pressing still needs improvement in terms of the processed material structure homogeneity, but it has the capacity to become the fastest sintering treatment as it allows room temperature activation where the total process time only takes a few seconds. In addition, this 10‐20 seconds processing technique has shown good potential for improving the transparency of alumina presintered specimens.
doi_str_mv 10.1111/jace.17072
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02616768v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2417768704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4082-5ba1e2fe1b56957c4914654cdaf4011c4bce812c0fc12818377046052e02569d3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsXP8GCXhS2zqT5t8dSWqsUvOg5ZNOsTdl2a2Jb6qc364pH5zLM8HuPmUfINcIAUz2sjHUDlCDpCekh55jTAsUp6QEAzaWicE4uYlylEQvFeuR2Wpu4zNbehuZg9i7bBhej37xnTZV9-WCbjTeX5KwydXRXv71P3qaT1_Esn788Po1H89wyUDTnpUFHK4clFwWXlhXIBGd2YSoGiJaV1imkFiqLVKEaSglMAKcOaFIshn1y1_kuTa23wa9NOOrGeD0bzXW7AypQSKH2mNibjt2G5mPn4qdeNbuwSedpylAmKJkn6r6j0nsxBlf92SLoNjHdJqZ_EkswdvDB1-74D6mfR-NJp_kG0plp8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417768704</pqid></control><display><type>article</type><title>Flash microwave pressing of zirconia</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Manière, Charles ; Lee, Geuntak ; Torresani, Elisa ; Gerling, John F. ; Yakovlev, Vadim V. ; Martin, Darold ; Olevsky, Eugene A.</creator><creatorcontrib>Manière, Charles ; Lee, Geuntak ; Torresani, Elisa ; Gerling, John F. ; Yakovlev, Vadim V. ; Martin, Darold ; Olevsky, Eugene A.</creatorcontrib><description>Microwave Pressing is a promising way to reduce microwave sintering temperatures and stabilize microwave powder materials processing. A multiphysics simulation was conducted of the regulated pressure‐assisted microwave cavity. This simulation took into consideration resonance phenomena and the nonlinear temperature‐dependent material parameters of zirconia. The intrinsic behaviors of microwave systems and zirconia make the regulation of the microwave pressing difficult. However, the same phenomena can be used to activate flash sintering. Flash microwave sintering uses high electric fields of the resonant microwave profile, the Negative Temperature Behavior (NTC) of zirconia resistivity, and the mechanical pressure applied to the powder via a die compaction configuration. The resulting flash microwave pressing still needs improvement in terms of the processed material structure homogeneity, but it has the capacity to become the fastest sintering treatment as it allows room temperature activation where the total process time only takes a few seconds. In addition, this 10‐20 seconds processing technique has shown good potential for improving the transparency of alumina presintered specimens.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17072</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Chemical and Process Engineering ; Chemical Sciences ; Electric fields ; Engineering Sciences ; flash sintering ; Homogeneity ; Material chemistry ; Materials processing ; Mechanics ; Mechanics of materials ; Microwave sintering ; Pressing ; pressure‐assisted sintering ; Resistance sintering ; resonant cavity ; Room temperature ; simulation ; Sintering ; Temperature dependence ; transparent ceramics ; Zirconium dioxide</subject><ispartof>Journal of the American Ceramic Society, 2020-08, Vol.103 (8), p.4110-4121</ispartof><rights>2020 The American Ceramic Society</rights><rights>2020 American Ceramic Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4082-5ba1e2fe1b56957c4914654cdaf4011c4bce812c0fc12818377046052e02569d3</citedby><cites>FETCH-LOGICAL-c4082-5ba1e2fe1b56957c4914654cdaf4011c4bce812c0fc12818377046052e02569d3</cites><orcidid>0000-0002-6342-7090 ; 0000-0003-0073-9772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.17072$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.17072$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-02616768$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Manière, Charles</creatorcontrib><creatorcontrib>Lee, Geuntak</creatorcontrib><creatorcontrib>Torresani, Elisa</creatorcontrib><creatorcontrib>Gerling, John F.</creatorcontrib><creatorcontrib>Yakovlev, Vadim V.</creatorcontrib><creatorcontrib>Martin, Darold</creatorcontrib><creatorcontrib>Olevsky, Eugene A.</creatorcontrib><title>Flash microwave pressing of zirconia</title><title>Journal of the American Ceramic Society</title><description>Microwave Pressing is a promising way to reduce microwave sintering temperatures and stabilize microwave powder materials processing. A multiphysics simulation was conducted of the regulated pressure‐assisted microwave cavity. This simulation took into consideration resonance phenomena and the nonlinear temperature‐dependent material parameters of zirconia. The intrinsic behaviors of microwave systems and zirconia make the regulation of the microwave pressing difficult. However, the same phenomena can be used to activate flash sintering. Flash microwave sintering uses high electric fields of the resonant microwave profile, the Negative Temperature Behavior (NTC) of zirconia resistivity, and the mechanical pressure applied to the powder via a die compaction configuration. The resulting flash microwave pressing still needs improvement in terms of the processed material structure homogeneity, but it has the capacity to become the fastest sintering treatment as it allows room temperature activation where the total process time only takes a few seconds. In addition, this 10‐20 seconds processing technique has shown good potential for improving the transparency of alumina presintered specimens.</description><subject>Aluminum oxide</subject><subject>Chemical and Process Engineering</subject><subject>Chemical Sciences</subject><subject>Electric fields</subject><subject>Engineering Sciences</subject><subject>flash sintering</subject><subject>Homogeneity</subject><subject>Material chemistry</subject><subject>Materials processing</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Microwave sintering</subject><subject>Pressing</subject><subject>pressure‐assisted sintering</subject><subject>Resistance sintering</subject><subject>resonant cavity</subject><subject>Room temperature</subject><subject>simulation</subject><subject>Sintering</subject><subject>Temperature dependence</subject><subject>transparent ceramics</subject><subject>Zirconium dioxide</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsXP8GCXhS2zqT5t8dSWqsUvOg5ZNOsTdl2a2Jb6qc364pH5zLM8HuPmUfINcIAUz2sjHUDlCDpCekh55jTAsUp6QEAzaWicE4uYlylEQvFeuR2Wpu4zNbehuZg9i7bBhej37xnTZV9-WCbjTeX5KwydXRXv71P3qaT1_Esn788Po1H89wyUDTnpUFHK4clFwWXlhXIBGd2YSoGiJaV1imkFiqLVKEaSglMAKcOaFIshn1y1_kuTa23wa9NOOrGeD0bzXW7AypQSKH2mNibjt2G5mPn4qdeNbuwSedpylAmKJkn6r6j0nsxBlf92SLoNjHdJqZ_EkswdvDB1-74D6mfR-NJp_kG0plp8w</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Manière, Charles</creator><creator>Lee, Geuntak</creator><creator>Torresani, Elisa</creator><creator>Gerling, John F.</creator><creator>Yakovlev, Vadim V.</creator><creator>Martin, Darold</creator><creator>Olevsky, Eugene A.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6342-7090</orcidid><orcidid>https://orcid.org/0000-0003-0073-9772</orcidid></search><sort><creationdate>202008</creationdate><title>Flash microwave pressing of zirconia</title><author>Manière, Charles ; Lee, Geuntak ; Torresani, Elisa ; Gerling, John F. ; Yakovlev, Vadim V. ; Martin, Darold ; Olevsky, Eugene A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4082-5ba1e2fe1b56957c4914654cdaf4011c4bce812c0fc12818377046052e02569d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Chemical and Process Engineering</topic><topic>Chemical Sciences</topic><topic>Electric fields</topic><topic>Engineering Sciences</topic><topic>flash sintering</topic><topic>Homogeneity</topic><topic>Material chemistry</topic><topic>Materials processing</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Microwave sintering</topic><topic>Pressing</topic><topic>pressure‐assisted sintering</topic><topic>Resistance sintering</topic><topic>resonant cavity</topic><topic>Room temperature</topic><topic>simulation</topic><topic>Sintering</topic><topic>Temperature dependence</topic><topic>transparent ceramics</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manière, Charles</creatorcontrib><creatorcontrib>Lee, Geuntak</creatorcontrib><creatorcontrib>Torresani, Elisa</creatorcontrib><creatorcontrib>Gerling, John F.</creatorcontrib><creatorcontrib>Yakovlev, Vadim V.</creatorcontrib><creatorcontrib>Martin, Darold</creatorcontrib><creatorcontrib>Olevsky, Eugene A.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manière, Charles</au><au>Lee, Geuntak</au><au>Torresani, Elisa</au><au>Gerling, John F.</au><au>Yakovlev, Vadim V.</au><au>Martin, Darold</au><au>Olevsky, Eugene A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flash microwave pressing of zirconia</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2020-08</date><risdate>2020</risdate><volume>103</volume><issue>8</issue><spage>4110</spage><epage>4121</epage><pages>4110-4121</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Microwave Pressing is a promising way to reduce microwave sintering temperatures and stabilize microwave powder materials processing. A multiphysics simulation was conducted of the regulated pressure‐assisted microwave cavity. This simulation took into consideration resonance phenomena and the nonlinear temperature‐dependent material parameters of zirconia. The intrinsic behaviors of microwave systems and zirconia make the regulation of the microwave pressing difficult. However, the same phenomena can be used to activate flash sintering. Flash microwave sintering uses high electric fields of the resonant microwave profile, the Negative Temperature Behavior (NTC) of zirconia resistivity, and the mechanical pressure applied to the powder via a die compaction configuration. The resulting flash microwave pressing still needs improvement in terms of the processed material structure homogeneity, but it has the capacity to become the fastest sintering treatment as it allows room temperature activation where the total process time only takes a few seconds. In addition, this 10‐20 seconds processing technique has shown good potential for improving the transparency of alumina presintered specimens.</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.17072</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6342-7090</orcidid><orcidid>https://orcid.org/0000-0003-0073-9772</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2020-08, Vol.103 (8), p.4110-4121
issn 0002-7820
1551-2916
language eng
recordid cdi_hal_primary_oai_HAL_hal_02616768v1
source Wiley Online Library Journals Frontfile Complete
subjects Aluminum oxide
Chemical and Process Engineering
Chemical Sciences
Electric fields
Engineering Sciences
flash sintering
Homogeneity
Material chemistry
Materials processing
Mechanics
Mechanics of materials
Microwave sintering
Pressing
pressure‐assisted sintering
Resistance sintering
resonant cavity
Room temperature
simulation
Sintering
Temperature dependence
transparent ceramics
Zirconium dioxide
title Flash microwave pressing of zirconia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flash%20microwave%20pressing%20of%20zirconia&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Mani%C3%A8re,%20Charles&rft.date=2020-08&rft.volume=103&rft.issue=8&rft.spage=4110&rft.epage=4121&rft.pages=4110-4121&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17072&rft_dat=%3Cproquest_hal_p%3E2417768704%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2417768704&rft_id=info:pmid/&rfr_iscdi=true