Stochastic Shadow Pricing of Renewable Natural Resources

By means of stochastic optimal control, this paper aims at studying the shadow pricing of renewable natural resources in uncertainty. Two cases are considered, respectively centralized and decentralized control processes. The decentralized control is in the form of a stochastic control of the state...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental modeling & assessment 2019-02, Vol.24 (1), p.49-60
1. Verfasser: Dragicevic, Arnaud Z.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 49
container_title Environmental modeling & assessment
container_volume 24
creator Dragicevic, Arnaud Z.
description By means of stochastic optimal control, this paper aims at studying the shadow pricing of renewable natural resources in uncertainty. Two cases are considered, respectively centralized and decentralized control processes. The decentralized control is in the form of a stochastic control of the state vector distributed among several agents. In both cases, the optimal control path minimizing the cost function, which is a decreasing function of time, corresponds to the real option valuation. The latter is a cost-effective optional investment in the resource stock preservation in uncertainty. The results obtained from numerical simulations show coherence with those encountered in the literature on option pricing.
doi_str_mv 10.1007/s10666-018-9599-1
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02607904v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713976220</galeid><sourcerecordid>A713976220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-33119beed78a760a9bcf1db9557edd19124ef9b45d35d8dc4016cc391fd636fe3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYsoqKM_wF3BlYvqvUmbNMtBfMGg4ug6pHnMVGqjScfBf29KRVeSxQ2H71zOPVl2gnCOAPwiIjDGCsC6EJUQBe5kB1hxWhDB-G76lwQKAoTtZ4cxvgIkHKqDrF4OXq9VHFqdL9fK-G3-GFrd9qvcu_zJ9narms7m92rYBNUlJfpN0DYeZXtOddEe_8xZ9nJ99Xx5Wywebu4u54tC01oMBaWIorHW8FpxBko02qFpRFVxawwKJKV1oikrQytTG10CMq2pQGcYZc7SWXY27V2rTr6H9k2FL-lVK2_nCzlq6SbgAspPTOzpxL4H_7GxcZCvKWyf4kkCKDhAiZCo84laqc7Ktnd-CEqnZ-xbq31vXZv0OUcqOCNkNOBk0MHHGKz7zYEgx_bl1L5M7cuxfTlGIZMnJrZf2fAX5X_TN__uhWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019700410</pqid></control><display><type>article</type><title>Stochastic Shadow Pricing of Renewable Natural Resources</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dragicevic, Arnaud Z.</creator><creatorcontrib>Dragicevic, Arnaud Z.</creatorcontrib><description>By means of stochastic optimal control, this paper aims at studying the shadow pricing of renewable natural resources in uncertainty. Two cases are considered, respectively centralized and decentralized control processes. The decentralized control is in the form of a stochastic control of the state vector distributed among several agents. In both cases, the optimal control path minimizing the cost function, which is a decreasing function of time, corresponds to the real option valuation. The latter is a cost-effective optional investment in the resource stock preservation in uncertainty. The results obtained from numerical simulations show coherence with those encountered in the literature on option pricing.</description><identifier>ISSN: 1420-2026</identifier><identifier>EISSN: 1573-2967</identifier><identifier>DOI: 10.1007/s10666-018-9599-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Computer simulation ; Decentralized control ; Earth and Environmental Science ; Economic models ; Environment ; Environmental Sciences ; Math. Appl. in Environmental Science ; Mathematical Modeling and Industrial Mathematics ; Natural resources ; Numerical analysis ; Operations Research/Decision Theory ; Optimal control ; Preservation ; Pricing ; Renewable resources ; Shadow prices ; Shadows ; Simulation ; Stochastic processes ; Stochasticity ; Studies ; Uncertainty</subject><ispartof>Environmental modeling &amp; assessment, 2019-02, Vol.24 (1), p.49-60</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Environmental Modeling &amp; Assessment is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-33119beed78a760a9bcf1db9557edd19124ef9b45d35d8dc4016cc391fd636fe3</citedby><cites>FETCH-LOGICAL-c389t-33119beed78a760a9bcf1db9557edd19124ef9b45d35d8dc4016cc391fd636fe3</cites><orcidid>0000-0003-0381-5013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10666-018-9599-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10666-018-9599-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02607904$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dragicevic, Arnaud Z.</creatorcontrib><title>Stochastic Shadow Pricing of Renewable Natural Resources</title><title>Environmental modeling &amp; assessment</title><addtitle>Environ Model Assess</addtitle><description>By means of stochastic optimal control, this paper aims at studying the shadow pricing of renewable natural resources in uncertainty. Two cases are considered, respectively centralized and decentralized control processes. The decentralized control is in the form of a stochastic control of the state vector distributed among several agents. In both cases, the optimal control path minimizing the cost function, which is a decreasing function of time, corresponds to the real option valuation. The latter is a cost-effective optional investment in the resource stock preservation in uncertainty. The results obtained from numerical simulations show coherence with those encountered in the literature on option pricing.</description><subject>Applications of Mathematics</subject><subject>Computer simulation</subject><subject>Decentralized control</subject><subject>Earth and Environmental Science</subject><subject>Economic models</subject><subject>Environment</subject><subject>Environmental Sciences</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Natural resources</subject><subject>Numerical analysis</subject><subject>Operations Research/Decision Theory</subject><subject>Optimal control</subject><subject>Preservation</subject><subject>Pricing</subject><subject>Renewable resources</subject><subject>Shadow prices</subject><subject>Shadows</subject><subject>Simulation</subject><subject>Stochastic processes</subject><subject>Stochasticity</subject><subject>Studies</subject><subject>Uncertainty</subject><issn>1420-2026</issn><issn>1573-2967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYsoqKM_wF3BlYvqvUmbNMtBfMGg4ug6pHnMVGqjScfBf29KRVeSxQ2H71zOPVl2gnCOAPwiIjDGCsC6EJUQBe5kB1hxWhDB-G76lwQKAoTtZ4cxvgIkHKqDrF4OXq9VHFqdL9fK-G3-GFrd9qvcu_zJ9narms7m92rYBNUlJfpN0DYeZXtOddEe_8xZ9nJ99Xx5Wywebu4u54tC01oMBaWIorHW8FpxBko02qFpRFVxawwKJKV1oikrQytTG10CMq2pQGcYZc7SWXY27V2rTr6H9k2FL-lVK2_nCzlq6SbgAspPTOzpxL4H_7GxcZCvKWyf4kkCKDhAiZCo84laqc7Ktnd-CEqnZ-xbq31vXZv0OUcqOCNkNOBk0MHHGKz7zYEgx_bl1L5M7cuxfTlGIZMnJrZf2fAX5X_TN__uhWg</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Dragicevic, Arnaud Z.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7ST</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0381-5013</orcidid></search><sort><creationdate>20190201</creationdate><title>Stochastic Shadow Pricing of Renewable Natural Resources</title><author>Dragicevic, Arnaud Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-33119beed78a760a9bcf1db9557edd19124ef9b45d35d8dc4016cc391fd636fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Computer simulation</topic><topic>Decentralized control</topic><topic>Earth and Environmental Science</topic><topic>Economic models</topic><topic>Environment</topic><topic>Environmental Sciences</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Natural resources</topic><topic>Numerical analysis</topic><topic>Operations Research/Decision Theory</topic><topic>Optimal control</topic><topic>Preservation</topic><topic>Pricing</topic><topic>Renewable resources</topic><topic>Shadow prices</topic><topic>Shadows</topic><topic>Simulation</topic><topic>Stochastic processes</topic><topic>Stochasticity</topic><topic>Studies</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dragicevic, Arnaud Z.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental modeling &amp; assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dragicevic, Arnaud Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Shadow Pricing of Renewable Natural Resources</atitle><jtitle>Environmental modeling &amp; assessment</jtitle><stitle>Environ Model Assess</stitle><date>2019-02-01</date><risdate>2019</risdate><volume>24</volume><issue>1</issue><spage>49</spage><epage>60</epage><pages>49-60</pages><issn>1420-2026</issn><eissn>1573-2967</eissn><abstract>By means of stochastic optimal control, this paper aims at studying the shadow pricing of renewable natural resources in uncertainty. Two cases are considered, respectively centralized and decentralized control processes. The decentralized control is in the form of a stochastic control of the state vector distributed among several agents. In both cases, the optimal control path minimizing the cost function, which is a decreasing function of time, corresponds to the real option valuation. The latter is a cost-effective optional investment in the resource stock preservation in uncertainty. The results obtained from numerical simulations show coherence with those encountered in the literature on option pricing.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10666-018-9599-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0381-5013</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1420-2026
ispartof Environmental modeling & assessment, 2019-02, Vol.24 (1), p.49-60
issn 1420-2026
1573-2967
language eng
recordid cdi_hal_primary_oai_HAL_hal_02607904v1
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Computer simulation
Decentralized control
Earth and Environmental Science
Economic models
Environment
Environmental Sciences
Math. Appl. in Environmental Science
Mathematical Modeling and Industrial Mathematics
Natural resources
Numerical analysis
Operations Research/Decision Theory
Optimal control
Preservation
Pricing
Renewable resources
Shadow prices
Shadows
Simulation
Stochastic processes
Stochasticity
Studies
Uncertainty
title Stochastic Shadow Pricing of Renewable Natural Resources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Shadow%20Pricing%20of%20Renewable%20Natural%20Resources&rft.jtitle=Environmental%20modeling%20&%20assessment&rft.au=Dragicevic,%20Arnaud%20Z.&rft.date=2019-02-01&rft.volume=24&rft.issue=1&rft.spage=49&rft.epage=60&rft.pages=49-60&rft.issn=1420-2026&rft.eissn=1573-2967&rft_id=info:doi/10.1007/s10666-018-9599-1&rft_dat=%3Cgale_hal_p%3EA713976220%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2019700410&rft_id=info:pmid/&rft_galeid=A713976220&rfr_iscdi=true