Microbial biofilm structure and organic matter use in mediterranean streams

River and stream biofilms in mediterranean fluvial ecosystems face both extreme seasonality as well as arrhythmic fluctuations. The hydrological extremes (droughts and floods) impose direct changes in water availability but also in the quantity and quality of organic matter and nutrients that sustai...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrobiologia 2013-11, Vol.719 (1), p.43-58
Hauptverfasser: Romaní, Anna M., Amalfitano, Stefano, Artigas, Joan, Fazi, Stefano, Sabater, Sergi, Timoner, Xisca, Ylla, Irene, Zoppini, Annamaria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:River and stream biofilms in mediterranean fluvial ecosystems face both extreme seasonality as well as arrhythmic fluctuations. The hydrological extremes (droughts and floods) impose direct changes in water availability but also in the quantity and quality of organic matter and nutrients that sustain the microbial growth. This review analyzes how these ecological pulses might determine unique properties of biofilms developing in mediterranean streams. The paper brings together data from heterotrophic and autotrophic community structure, and extracellular enzyme activities in biofilms in mediterranean streams. Mediterranean stream biofilms show higher use of peptides during the favorable period for epilithic algae development (spring), and preferential use of cellulose and hemicellulose in autumn as a response to allochthonous input. The drying process causes the reduction in bacterial production and chlorophyll biomass, but the rapid recovery of both autotrophs and heterotrophs with rewetting indicates their adaptability to fluctuations. Bacteria surviving the drought are mainly associated with sediment and leaf litter which serve as “humid refuges”. Some algae and cyanobacteria show resistant strategies to cope with the drought stress. The resistance to these fluctuations is strongly linked to the streambed characteristics (e.g., sediment grain size, organic matter accumulation, nutrient content).
ISSN:0018-8158
1573-5117
DOI:10.1007/s10750-012-1302-y