Small-scale tests to investigate the dynamics of finite-sized dry granular avalanches and forces on a wall-like obstacle
Small-scale laboratory tests investigate the force from finite-sized granular avalanches on a wall. First, the reference flows, in absence of the wall, were analysed in a wide range of slopes from a minimum angle for which no flow is possible to a critical angle for which the flow becomes very dilut...
Gespeichert in:
Veröffentlicht in: | Granular matter 2012-09, Vol.14 (5), p.577-587 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 587 |
---|---|
container_issue | 5 |
container_start_page | 577 |
container_title | Granular matter |
container_volume | 14 |
creator | Caccamo, P. Chanut, B. Faug, T. Bellot, H. Naaim-Bouvet, F. |
description | Small-scale laboratory tests investigate the force from finite-sized granular avalanches on a wall. First, the reference flows, in absence of the wall, were analysed in a wide range of slopes from a minimum angle for which no flow is possible to a critical angle for which the flow becomes very dilute. The changes in thickness and velocity over time exhibit transitions at the minimum slope angle and at intermediate slopes. Then the normal force exerted on a wall spanning the flow was measured. It is notable that the transitions detected in reference flows had a direct effect on the force. The maximum force was equal to the kinetic force of the incoming flow at high slopes, whereas it scaled like hydrostatic force at lower slopes. This is the effect of the dense-to-dilute transition. Furthermore, the maximum force at low slopes was found to be several times greater than the hydrostatic force of the incoming flow. This finding is explained by the considerable contribution of the stagnant zone formed upstream of the wall. Furthermore, the jamming transition was highlighted at the avalanche standstill by the collapse of the residual force on the wall when approaching the minimum angle for which no flow is possible. These results are useful for the design of protection dams against rapid mass movements. |
doi_str_mv | 10.1007/s10035-012-0358-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02597308v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759531011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-57196bd7fbc8a0ece04eb6dad64b545130c33d7290a7b5188616c20ed28c50fa3</originalsourceid><addsrcrecordid>eNp1kUGPFCEQhTtGE9fVH-CNxIseUAqahj5uNq5rMokH9UyqgZ5hZWCFntHx18ukN8aYeKFeKt8rKF7XvQT2FhhT72o7haQMOG1VU_2ou4Be9FQNYnj8oCXj8LR7VusdYyBHUBfdz897jJFWi9GTxdelkiWTkI5Nhi0urbnzxJ0S7oOtJM9kDiksntbwyzviyolsC6ZDxELwiBGT3flKMDky52KbzIkg-XG-JIZvnuSpLmijf949mTFW_-KhXnZfb95_ub6lm08fPl5fbagVWixUKhiHyal5shqZt571fhocuqGfZC9BMCuEU3xkqCYJWg8wWM6849pKNqO47N6sc3cYzX0JeywnkzGY26uNOfcYl6MSTB-hsa9X9r7k74f2A2YfqvWxbeXzoRoAMfQcGIiGvvoHvcuHktomBpgYuVRCqUbBStmSay1-_vMCYOacm1lzMy03c87N6Obhq6c2Nm19-Xvy_0y_AbgymnA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039257377</pqid></control><display><type>article</type><title>Small-scale tests to investigate the dynamics of finite-sized dry granular avalanches and forces on a wall-like obstacle</title><source>SpringerLink Journals - AutoHoldings</source><creator>Caccamo, P. ; Chanut, B. ; Faug, T. ; Bellot, H. ; Naaim-Bouvet, F.</creator><creatorcontrib>Caccamo, P. ; Chanut, B. ; Faug, T. ; Bellot, H. ; Naaim-Bouvet, F.</creatorcontrib><description>Small-scale laboratory tests investigate the force from finite-sized granular avalanches on a wall. First, the reference flows, in absence of the wall, were analysed in a wide range of slopes from a minimum angle for which no flow is possible to a critical angle for which the flow becomes very dilute. The changes in thickness and velocity over time exhibit transitions at the minimum slope angle and at intermediate slopes. Then the normal force exerted on a wall spanning the flow was measured. It is notable that the transitions detected in reference flows had a direct effect on the force. The maximum force was equal to the kinetic force of the incoming flow at high slopes, whereas it scaled like hydrostatic force at lower slopes. This is the effect of the dense-to-dilute transition. Furthermore, the maximum force at low slopes was found to be several times greater than the hydrostatic force of the incoming flow. This finding is explained by the considerable contribution of the stagnant zone formed upstream of the wall. Furthermore, the jamming transition was highlighted at the avalanche standstill by the collapse of the residual force on the wall when approaching the minimum angle for which no flow is possible. These results are useful for the design of protection dams against rapid mass movements.</description><identifier>ISSN: 1434-5021</identifier><identifier>EISSN: 1434-7636</identifier><identifier>DOI: 10.1007/s10035-012-0358-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Avalanches ; Complex Fluids and Microfluidics ; Drying ; Dynamic tests ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Environmental Sciences ; Finite element analysis ; Foundations ; Geoengineering ; Grain size ; Heat and Mass Transfer ; Hydraulics ; Hydrostatics ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Movements ; Original Paper ; Physics ; Physics and Astronomy ; Slopes ; Soft and Granular Matter ; Upstream ; Velocity ; Walls</subject><ispartof>Granular matter, 2012-09, Vol.14 (5), p.577-587</ispartof><rights>Springer-Verlag 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-57196bd7fbc8a0ece04eb6dad64b545130c33d7290a7b5188616c20ed28c50fa3</citedby><cites>FETCH-LOGICAL-c383t-57196bd7fbc8a0ece04eb6dad64b545130c33d7290a7b5188616c20ed28c50fa3</cites><orcidid>0000-0001-6023-2549 ; 0000-0002-7175-5270 ; 0000-0002-1687-9713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10035-012-0358-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10035-012-0358-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02597308$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Caccamo, P.</creatorcontrib><creatorcontrib>Chanut, B.</creatorcontrib><creatorcontrib>Faug, T.</creatorcontrib><creatorcontrib>Bellot, H.</creatorcontrib><creatorcontrib>Naaim-Bouvet, F.</creatorcontrib><title>Small-scale tests to investigate the dynamics of finite-sized dry granular avalanches and forces on a wall-like obstacle</title><title>Granular matter</title><addtitle>Granular Matter</addtitle><description>Small-scale laboratory tests investigate the force from finite-sized granular avalanches on a wall. First, the reference flows, in absence of the wall, were analysed in a wide range of slopes from a minimum angle for which no flow is possible to a critical angle for which the flow becomes very dilute. The changes in thickness and velocity over time exhibit transitions at the minimum slope angle and at intermediate slopes. Then the normal force exerted on a wall spanning the flow was measured. It is notable that the transitions detected in reference flows had a direct effect on the force. The maximum force was equal to the kinetic force of the incoming flow at high slopes, whereas it scaled like hydrostatic force at lower slopes. This is the effect of the dense-to-dilute transition. Furthermore, the maximum force at low slopes was found to be several times greater than the hydrostatic force of the incoming flow. This finding is explained by the considerable contribution of the stagnant zone formed upstream of the wall. Furthermore, the jamming transition was highlighted at the avalanche standstill by the collapse of the residual force on the wall when approaching the minimum angle for which no flow is possible. These results are useful for the design of protection dams against rapid mass movements.</description><subject>Avalanches</subject><subject>Complex Fluids and Microfluidics</subject><subject>Drying</subject><subject>Dynamic tests</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Environmental Sciences</subject><subject>Finite element analysis</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Grain size</subject><subject>Heat and Mass Transfer</subject><subject>Hydraulics</subject><subject>Hydrostatics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Movements</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Slopes</subject><subject>Soft and Granular Matter</subject><subject>Upstream</subject><subject>Velocity</subject><subject>Walls</subject><issn>1434-5021</issn><issn>1434-7636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUGPFCEQhTtGE9fVH-CNxIseUAqahj5uNq5rMokH9UyqgZ5hZWCFntHx18ukN8aYeKFeKt8rKF7XvQT2FhhT72o7haQMOG1VU_2ou4Be9FQNYnj8oCXj8LR7VusdYyBHUBfdz897jJFWi9GTxdelkiWTkI5Nhi0urbnzxJ0S7oOtJM9kDiksntbwyzviyolsC6ZDxELwiBGT3flKMDky52KbzIkg-XG-JIZvnuSpLmijf949mTFW_-KhXnZfb95_ub6lm08fPl5fbagVWixUKhiHyal5shqZt571fhocuqGfZC9BMCuEU3xkqCYJWg8wWM6849pKNqO47N6sc3cYzX0JeywnkzGY26uNOfcYl6MSTB-hsa9X9r7k74f2A2YfqvWxbeXzoRoAMfQcGIiGvvoHvcuHktomBpgYuVRCqUbBStmSay1-_vMCYOacm1lzMy03c87N6Obhq6c2Nm19-Xvy_0y_AbgymnA</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Caccamo, P.</creator><creator>Chanut, B.</creator><creator>Faug, T.</creator><creator>Bellot, H.</creator><creator>Naaim-Bouvet, F.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6023-2549</orcidid><orcidid>https://orcid.org/0000-0002-7175-5270</orcidid><orcidid>https://orcid.org/0000-0002-1687-9713</orcidid></search><sort><creationdate>20120901</creationdate><title>Small-scale tests to investigate the dynamics of finite-sized dry granular avalanches and forces on a wall-like obstacle</title><author>Caccamo, P. ; Chanut, B. ; Faug, T. ; Bellot, H. ; Naaim-Bouvet, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-57196bd7fbc8a0ece04eb6dad64b545130c33d7290a7b5188616c20ed28c50fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Avalanches</topic><topic>Complex Fluids and Microfluidics</topic><topic>Drying</topic><topic>Dynamic tests</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Environmental Sciences</topic><topic>Finite element analysis</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Grain size</topic><topic>Heat and Mass Transfer</topic><topic>Hydraulics</topic><topic>Hydrostatics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Movements</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Slopes</topic><topic>Soft and Granular Matter</topic><topic>Upstream</topic><topic>Velocity</topic><topic>Walls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caccamo, P.</creatorcontrib><creatorcontrib>Chanut, B.</creatorcontrib><creatorcontrib>Faug, T.</creatorcontrib><creatorcontrib>Bellot, H.</creatorcontrib><creatorcontrib>Naaim-Bouvet, F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Granular matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caccamo, P.</au><au>Chanut, B.</au><au>Faug, T.</au><au>Bellot, H.</au><au>Naaim-Bouvet, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Small-scale tests to investigate the dynamics of finite-sized dry granular avalanches and forces on a wall-like obstacle</atitle><jtitle>Granular matter</jtitle><stitle>Granular Matter</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>14</volume><issue>5</issue><spage>577</spage><epage>587</epage><pages>577-587</pages><issn>1434-5021</issn><eissn>1434-7636</eissn><abstract>Small-scale laboratory tests investigate the force from finite-sized granular avalanches on a wall. First, the reference flows, in absence of the wall, were analysed in a wide range of slopes from a minimum angle for which no flow is possible to a critical angle for which the flow becomes very dilute. The changes in thickness and velocity over time exhibit transitions at the minimum slope angle and at intermediate slopes. Then the normal force exerted on a wall spanning the flow was measured. It is notable that the transitions detected in reference flows had a direct effect on the force. The maximum force was equal to the kinetic force of the incoming flow at high slopes, whereas it scaled like hydrostatic force at lower slopes. This is the effect of the dense-to-dilute transition. Furthermore, the maximum force at low slopes was found to be several times greater than the hydrostatic force of the incoming flow. This finding is explained by the considerable contribution of the stagnant zone formed upstream of the wall. Furthermore, the jamming transition was highlighted at the avalanche standstill by the collapse of the residual force on the wall when approaching the minimum angle for which no flow is possible. These results are useful for the design of protection dams against rapid mass movements.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10035-012-0358-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6023-2549</orcidid><orcidid>https://orcid.org/0000-0002-7175-5270</orcidid><orcidid>https://orcid.org/0000-0002-1687-9713</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-5021 |
ispartof | Granular matter, 2012-09, Vol.14 (5), p.577-587 |
issn | 1434-5021 1434-7636 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02597308v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Avalanches Complex Fluids and Microfluidics Drying Dynamic tests Engineering Fluid Dynamics Engineering Thermodynamics Environmental Sciences Finite element analysis Foundations Geoengineering Grain size Heat and Mass Transfer Hydraulics Hydrostatics Industrial Chemistry/Chemical Engineering Materials Science Movements Original Paper Physics Physics and Astronomy Slopes Soft and Granular Matter Upstream Velocity Walls |
title | Small-scale tests to investigate the dynamics of finite-sized dry granular avalanches and forces on a wall-like obstacle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Small-scale%20tests%20to%20investigate%20the%20dynamics%20of%20finite-sized%20dry%20granular%20avalanches%20and%20forces%20on%20a%20wall-like%20obstacle&rft.jtitle=Granular%20matter&rft.au=Caccamo,%20P.&rft.date=2012-09-01&rft.volume=14&rft.issue=5&rft.spage=577&rft.epage=587&rft.pages=577-587&rft.issn=1434-5021&rft.eissn=1434-7636&rft_id=info:doi/10.1007/s10035-012-0358-8&rft_dat=%3Cproquest_hal_p%3E2759531011%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1039257377&rft_id=info:pmid/&rfr_iscdi=true |