Mining Frequent Gradual Itemsets from Large Databases
Mining gradual rules plays a crucial role in many real world applications where huge volumes of complex numerical data must be handled, e.g., biological databases, survey databases, data streams or sensor readings. Gradual rules highlight complex order correlations of the form “The more/less X, then...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | 5772 |
container_start_page | 297 |
container_title | |
container_volume | |
creator | Di-Jorio, Lisa Laurent, Anne Teisseire, Maguelonne |
description | Mining gradual rules plays a crucial role in many real world applications where huge volumes of complex numerical data must be handled, e.g., biological databases, survey databases, data streams or sensor readings. Gradual rules highlight complex order correlations of the form “The more/less X, then the more/less Y”. Such rules have been studied since the early 70’s, mostly in the fuzzy logic domain, where the main efforts have been focused on how to model and use such rules. However, mining gradual rules remains challenging because of the exponential combination space to explore. In this paper, we tackle the particular problem of handling huge volumes by proposing scalable methods. First, we formally define gradual association rules and we propose an original lattice-based approach. The GRITE algorithm is proposed for extracting gradual itemsets in an efficient manner. An experimental study on large-scale synthetic and real datasets is performed, showing the efficiency and interest of our approach. |
doi_str_mv | 10.1007/978-3-642-03915-7_26 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_sprin</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02592797v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02592797v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h232t-ece84a3857e5a7a9af00f8e8e5b02fd909772b8a0ae97de3a8267c40a9d82d5e3</originalsourceid><addsrcrecordid>eNpFkD1PwzAQQM2XRCn9BwxZGQxnO47tsSr9koJYYLYuzaUNtAnYKRL_nrRF4paT3j3d8Bi7E_AgAMyjM5YrnqWSg3JCc-NldsZuVE-OID1nA5EJwZVK3cX_Ic0u2QAUSO5Mqq7ZKMZ36EeJDEAMmH6um7pZJ7NAX3tqumQesNzjNll2tIvUxaQK7S7JMawpecIOC4wUb9lVhdtIo789ZG-z6etkwfOX-XIyzvlGKtlxWpFNUVltSKNBhxVAZcmSLkBWpQNnjCwsApIzJSm0MjOrFNCVVpaa1JDdn_5ucOs_Q73D8ONbrP1inPsDA6mdNM58i96VJzf2YrOm4Iu2_YhegD8U9H1Br3yfxR-D-UNB9Qv7uF3s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Mining Frequent Gradual Itemsets from Large Databases</title><source>Springer Books</source><creator>Di-Jorio, Lisa ; Laurent, Anne ; Teisseire, Maguelonne</creator><contributor>Adams, Niall M. ; Boulicaut, Jean-François ; Robardet, Céline ; Siebes, Arno</contributor><creatorcontrib>Di-Jorio, Lisa ; Laurent, Anne ; Teisseire, Maguelonne ; Adams, Niall M. ; Boulicaut, Jean-François ; Robardet, Céline ; Siebes, Arno</creatorcontrib><description>Mining gradual rules plays a crucial role in many real world applications where huge volumes of complex numerical data must be handled, e.g., biological databases, survey databases, data streams or sensor readings. Gradual rules highlight complex order correlations of the form “The more/less X, then the more/less Y”. Such rules have been studied since the early 70’s, mostly in the fuzzy logic domain, where the main efforts have been focused on how to model and use such rules. However, mining gradual rules remains challenging because of the exponential combination space to explore. In this paper, we tackle the particular problem of handling huge volumes by proposing scalable methods. First, we formally define gradual association rules and we propose an original lattice-based approach. The GRITE algorithm is proposed for extracting gradual itemsets in an efficient manner. An experimental study on large-scale synthetic and real datasets is performed, showing the efficiency and interest of our approach.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3642039146</identifier><identifier>ISBN: 9783642039140</identifier><identifier>EISSN: 1611-3349</identifier><identifier>EISBN: 3642039154</identifier><identifier>EISBN: 9783642039157</identifier><identifier>DOI: 10.1007/978-3-642-03915-7_26</identifier><language>eng</language><publisher>Berlin, Heidelberg: Springer Berlin Heidelberg</publisher><subject>Association Rule ; Binary Matrix ; Environmental Sciences ; Frequent Itemsets ; Hasse Diagram ; Membership Degree</subject><ispartof>Advances in Intelligent Data Analysis VIII, 2009 (5772), p.297-308</ispartof><rights>Springer-Verlag Berlin Heidelberg 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9313-6414 ; 0000-0003-3708-6429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-3-642-03915-7_26$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-3-642-03915-7_26$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,309,310,775,776,780,785,786,789,881,4036,4037,27902,38232,41418,42487</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02592797$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Adams, Niall M.</contributor><contributor>Boulicaut, Jean-François</contributor><contributor>Robardet, Céline</contributor><contributor>Siebes, Arno</contributor><creatorcontrib>Di-Jorio, Lisa</creatorcontrib><creatorcontrib>Laurent, Anne</creatorcontrib><creatorcontrib>Teisseire, Maguelonne</creatorcontrib><title>Mining Frequent Gradual Itemsets from Large Databases</title><title>Advances in Intelligent Data Analysis VIII</title><description>Mining gradual rules plays a crucial role in many real world applications where huge volumes of complex numerical data must be handled, e.g., biological databases, survey databases, data streams or sensor readings. Gradual rules highlight complex order correlations of the form “The more/less X, then the more/less Y”. Such rules have been studied since the early 70’s, mostly in the fuzzy logic domain, where the main efforts have been focused on how to model and use such rules. However, mining gradual rules remains challenging because of the exponential combination space to explore. In this paper, we tackle the particular problem of handling huge volumes by proposing scalable methods. First, we formally define gradual association rules and we propose an original lattice-based approach. The GRITE algorithm is proposed for extracting gradual itemsets in an efficient manner. An experimental study on large-scale synthetic and real datasets is performed, showing the efficiency and interest of our approach.</description><subject>Association Rule</subject><subject>Binary Matrix</subject><subject>Environmental Sciences</subject><subject>Frequent Itemsets</subject><subject>Hasse Diagram</subject><subject>Membership Degree</subject><issn>0302-9743</issn><issn>1611-3349</issn><isbn>3642039146</isbn><isbn>9783642039140</isbn><isbn>3642039154</isbn><isbn>9783642039157</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNpFkD1PwzAQQM2XRCn9BwxZGQxnO47tsSr9koJYYLYuzaUNtAnYKRL_nrRF4paT3j3d8Bi7E_AgAMyjM5YrnqWSg3JCc-NldsZuVE-OID1nA5EJwZVK3cX_Ic0u2QAUSO5Mqq7ZKMZ36EeJDEAMmH6um7pZJ7NAX3tqumQesNzjNll2tIvUxaQK7S7JMawpecIOC4wUb9lVhdtIo789ZG-z6etkwfOX-XIyzvlGKtlxWpFNUVltSKNBhxVAZcmSLkBWpQNnjCwsApIzJSm0MjOrFNCVVpaa1JDdn_5ucOs_Q73D8ONbrP1inPsDA6mdNM58i96VJzf2YrOm4Iu2_YhegD8U9H1Br3yfxR-D-UNB9Qv7uF3s</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Di-Jorio, Lisa</creator><creator>Laurent, Anne</creator><creator>Teisseire, Maguelonne</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9313-6414</orcidid><orcidid>https://orcid.org/0000-0003-3708-6429</orcidid></search><sort><creationdate>2009</creationdate><title>Mining Frequent Gradual Itemsets from Large Databases</title><author>Di-Jorio, Lisa ; Laurent, Anne ; Teisseire, Maguelonne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h232t-ece84a3857e5a7a9af00f8e8e5b02fd909772b8a0ae97de3a8267c40a9d82d5e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Association Rule</topic><topic>Binary Matrix</topic><topic>Environmental Sciences</topic><topic>Frequent Itemsets</topic><topic>Hasse Diagram</topic><topic>Membership Degree</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di-Jorio, Lisa</creatorcontrib><creatorcontrib>Laurent, Anne</creatorcontrib><creatorcontrib>Teisseire, Maguelonne</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di-Jorio, Lisa</au><au>Laurent, Anne</au><au>Teisseire, Maguelonne</au><au>Adams, Niall M.</au><au>Boulicaut, Jean-François</au><au>Robardet, Céline</au><au>Siebes, Arno</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Mining Frequent Gradual Itemsets from Large Databases</atitle><btitle>Advances in Intelligent Data Analysis VIII</btitle><date>2009</date><risdate>2009</risdate><issue>5772</issue><spage>297</spage><epage>308</epage><pages>297-308</pages><issn>0302-9743</issn><eissn>1611-3349</eissn><isbn>3642039146</isbn><isbn>9783642039140</isbn><eisbn>3642039154</eisbn><eisbn>9783642039157</eisbn><abstract>Mining gradual rules plays a crucial role in many real world applications where huge volumes of complex numerical data must be handled, e.g., biological databases, survey databases, data streams or sensor readings. Gradual rules highlight complex order correlations of the form “The more/less X, then the more/less Y”. Such rules have been studied since the early 70’s, mostly in the fuzzy logic domain, where the main efforts have been focused on how to model and use such rules. However, mining gradual rules remains challenging because of the exponential combination space to explore. In this paper, we tackle the particular problem of handling huge volumes by proposing scalable methods. First, we formally define gradual association rules and we propose an original lattice-based approach. The GRITE algorithm is proposed for extracting gradual itemsets in an efficient manner. An experimental study on large-scale synthetic and real datasets is performed, showing the efficiency and interest of our approach.</abstract><cop>Berlin, Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/978-3-642-03915-7_26</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9313-6414</orcidid><orcidid>https://orcid.org/0000-0003-3708-6429</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Advances in Intelligent Data Analysis VIII, 2009 (5772), p.297-308 |
issn | 0302-9743 1611-3349 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02592797v1 |
source | Springer Books |
subjects | Association Rule Binary Matrix Environmental Sciences Frequent Itemsets Hasse Diagram Membership Degree |
title | Mining Frequent Gradual Itemsets from Large Databases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T13%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Mining%20Frequent%20Gradual%20Itemsets%20from%20Large%20Databases&rft.btitle=Advances%20in%20Intelligent%20Data%20Analysis%20VIII&rft.au=Di-Jorio,%20Lisa&rft.date=2009&rft.issue=5772&rft.spage=297&rft.epage=308&rft.pages=297-308&rft.issn=0302-9743&rft.eissn=1611-3349&rft.isbn=3642039146&rft.isbn_list=9783642039140&rft_id=info:doi/10.1007/978-3-642-03915-7_26&rft_dat=%3Chal_sprin%3Eoai_HAL_hal_02592797v1%3C/hal_sprin%3E%3Curl%3E%3C/url%3E&rft.eisbn=3642039154&rft.eisbn_list=9783642039157&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |