An equation for spreading length, center of mass and maximum run-out shortenings of dense avalanche flows by vertical obstacles

In this paper, we consider dense snow avalanches interacting with a defense structure. The maximum run-out distance of dense snow avalanches is the sum of the center of mass run-out and the spreading length. We make the simplifying assumptions that the center of mass run-out is mainly dependent on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cold regions science and technology 2004-10, Vol.39 (2), p.141-151
Hauptverfasser: Faug, T., Naaim, M., Naaim-Bouvet, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 151
container_issue 2
container_start_page 141
container_title Cold regions science and technology
container_volume 39
creator Faug, T.
Naaim, M.
Naaim-Bouvet, F.
description In this paper, we consider dense snow avalanches interacting with a defense structure. The maximum run-out distance of dense snow avalanches is the sum of the center of mass run-out and the spreading length. We make the simplifying assumptions that the center of mass run-out is mainly dependent on the velocity of the avalanche flow and the spreading length is mainly linked to the volume of the deposit. The obstacle reduces momentum of the avalanche by (i) velocity reduction and (ii) mass reduction by deposition upstream of the obstacle. The first effect leads to the shortening of the center of mass run-out and the second one explains the spreading length decrease. Therefore, the maximum run-out reduction is a function of both velocity and volume reductions. An equation is proposed to predict the maximum run-out reduction. This equation is tested on small-scale granular avalanches. For laboratory experiments with confined granular avalanches interacting with a thin vertical dam, velocity and volume reductions are expressed as simple functions of the vertical dam height. The equation for the maximum run-out shortening is then calibrated on experimental data and used to predict the velocity reduction and the critical height for which the granular avalanche is entirely stopped by the vertical dam.
doi_str_mv 10.1016/j.coldregions.2004.04.002
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02583312v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165232X04000400</els_id><sourcerecordid>28297337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-894bea84699fd3d512133bb82fe35a3f6eadcd68f4ff5504ef5a9e9fc3976c333</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhkVpIW6S_6BeCoWuq4_9PBrTNAVDLw30JrTakS2zKzkarZuc-terxaXk1sKANOJ5X2b0EvKOszVnvP50XJswDhH2LnhcC8bK9VJMvCIr3jaiaMqSvyarzFaFkOLHFXmLeGS57yq5Ir82nsLjrFPWUxsixVMEPTi_pyP4fTp8pAZ8gkiDpZNGpNoP-fLkpnmicfZFmBPFQ4gJfFbhwg3gEag-61F7cwBqx_ATaf9MzxCTM3qkocekzQh4Q95YPSLc_jmvycPd5-_b-2L37cvX7WZXmJI3qWi7sgfdlnXX2UEOFRdcyr5vhQVZaWnrPLMZ6taW1lYVK8FWuoPOGtk1tZFSXpMPF9-DHtUpuknHZxW0U_ebnVremKhaKbk488y-v7CnGB5nwKQmhwbGvA2EGZVoRddI2fwT5C0ra8YWsLuAJgbECPbvCJypJUd1VC9yVEuOaikmsnZ70UL-nrODqNA48AYGF8EkNQT3Hy6_AT3LrvE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18046007</pqid></control><display><type>article</type><title>An equation for spreading length, center of mass and maximum run-out shortenings of dense avalanche flows by vertical obstacles</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Faug, T. ; Naaim, M. ; Naaim-Bouvet, F.</creator><creatorcontrib>Faug, T. ; Naaim, M. ; Naaim-Bouvet, F.</creatorcontrib><description>In this paper, we consider dense snow avalanches interacting with a defense structure. The maximum run-out distance of dense snow avalanches is the sum of the center of mass run-out and the spreading length. We make the simplifying assumptions that the center of mass run-out is mainly dependent on the velocity of the avalanche flow and the spreading length is mainly linked to the volume of the deposit. The obstacle reduces momentum of the avalanche by (i) velocity reduction and (ii) mass reduction by deposition upstream of the obstacle. The first effect leads to the shortening of the center of mass run-out and the second one explains the spreading length decrease. Therefore, the maximum run-out reduction is a function of both velocity and volume reductions. An equation is proposed to predict the maximum run-out reduction. This equation is tested on small-scale granular avalanches. For laboratory experiments with confined granular avalanches interacting with a thin vertical dam, velocity and volume reductions are expressed as simple functions of the vertical dam height. The equation for the maximum run-out shortening is then calibrated on experimental data and used to predict the velocity reduction and the critical height for which the granular avalanche is entirely stopped by the vertical dam.</description><identifier>ISSN: 0165-232X</identifier><identifier>EISSN: 1872-7441</identifier><identifier>DOI: 10.1016/j.coldregions.2004.04.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Avalanche dynamics ; Dam ; Environmental Sciences ; Granular flows ; Run-out shortening</subject><ispartof>Cold regions science and technology, 2004-10, Vol.39 (2), p.141-151</ispartof><rights>2004 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-894bea84699fd3d512133bb82fe35a3f6eadcd68f4ff5504ef5a9e9fc3976c333</citedby><cites>FETCH-LOGICAL-c417t-894bea84699fd3d512133bb82fe35a3f6eadcd68f4ff5504ef5a9e9fc3976c333</cites><orcidid>0000-0001-6023-2549 ; 0000-0002-7175-5270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.coldregions.2004.04.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-02583312$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Faug, T.</creatorcontrib><creatorcontrib>Naaim, M.</creatorcontrib><creatorcontrib>Naaim-Bouvet, F.</creatorcontrib><title>An equation for spreading length, center of mass and maximum run-out shortenings of dense avalanche flows by vertical obstacles</title><title>Cold regions science and technology</title><description>In this paper, we consider dense snow avalanches interacting with a defense structure. The maximum run-out distance of dense snow avalanches is the sum of the center of mass run-out and the spreading length. We make the simplifying assumptions that the center of mass run-out is mainly dependent on the velocity of the avalanche flow and the spreading length is mainly linked to the volume of the deposit. The obstacle reduces momentum of the avalanche by (i) velocity reduction and (ii) mass reduction by deposition upstream of the obstacle. The first effect leads to the shortening of the center of mass run-out and the second one explains the spreading length decrease. Therefore, the maximum run-out reduction is a function of both velocity and volume reductions. An equation is proposed to predict the maximum run-out reduction. This equation is tested on small-scale granular avalanches. For laboratory experiments with confined granular avalanches interacting with a thin vertical dam, velocity and volume reductions are expressed as simple functions of the vertical dam height. The equation for the maximum run-out shortening is then calibrated on experimental data and used to predict the velocity reduction and the critical height for which the granular avalanche is entirely stopped by the vertical dam.</description><subject>Avalanche dynamics</subject><subject>Dam</subject><subject>Environmental Sciences</subject><subject>Granular flows</subject><subject>Run-out shortening</subject><issn>0165-232X</issn><issn>1872-7441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNkU1rGzEQhkVpIW6S_6BeCoWuq4_9PBrTNAVDLw30JrTakS2zKzkarZuc-terxaXk1sKANOJ5X2b0EvKOszVnvP50XJswDhH2LnhcC8bK9VJMvCIr3jaiaMqSvyarzFaFkOLHFXmLeGS57yq5Ir82nsLjrFPWUxsixVMEPTi_pyP4fTp8pAZ8gkiDpZNGpNoP-fLkpnmicfZFmBPFQ4gJfFbhwg3gEag-61F7cwBqx_ATaf9MzxCTM3qkocekzQh4Q95YPSLc_jmvycPd5-_b-2L37cvX7WZXmJI3qWi7sgfdlnXX2UEOFRdcyr5vhQVZaWnrPLMZ6taW1lYVK8FWuoPOGtk1tZFSXpMPF9-DHtUpuknHZxW0U_ebnVremKhaKbk488y-v7CnGB5nwKQmhwbGvA2EGZVoRddI2fwT5C0ra8YWsLuAJgbECPbvCJypJUd1VC9yVEuOaikmsnZ70UL-nrODqNA48AYGF8EkNQT3Hy6_AT3LrvE</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Faug, T.</creator><creator>Naaim, M.</creator><creator>Naaim-Bouvet, F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6023-2549</orcidid><orcidid>https://orcid.org/0000-0002-7175-5270</orcidid></search><sort><creationdate>20041001</creationdate><title>An equation for spreading length, center of mass and maximum run-out shortenings of dense avalanche flows by vertical obstacles</title><author>Faug, T. ; Naaim, M. ; Naaim-Bouvet, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-894bea84699fd3d512133bb82fe35a3f6eadcd68f4ff5504ef5a9e9fc3976c333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Avalanche dynamics</topic><topic>Dam</topic><topic>Environmental Sciences</topic><topic>Granular flows</topic><topic>Run-out shortening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faug, T.</creatorcontrib><creatorcontrib>Naaim, M.</creatorcontrib><creatorcontrib>Naaim-Bouvet, F.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Cold regions science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faug, T.</au><au>Naaim, M.</au><au>Naaim-Bouvet, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An equation for spreading length, center of mass and maximum run-out shortenings of dense avalanche flows by vertical obstacles</atitle><jtitle>Cold regions science and technology</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>39</volume><issue>2</issue><spage>141</spage><epage>151</epage><pages>141-151</pages><issn>0165-232X</issn><eissn>1872-7441</eissn><abstract>In this paper, we consider dense snow avalanches interacting with a defense structure. The maximum run-out distance of dense snow avalanches is the sum of the center of mass run-out and the spreading length. We make the simplifying assumptions that the center of mass run-out is mainly dependent on the velocity of the avalanche flow and the spreading length is mainly linked to the volume of the deposit. The obstacle reduces momentum of the avalanche by (i) velocity reduction and (ii) mass reduction by deposition upstream of the obstacle. The first effect leads to the shortening of the center of mass run-out and the second one explains the spreading length decrease. Therefore, the maximum run-out reduction is a function of both velocity and volume reductions. An equation is proposed to predict the maximum run-out reduction. This equation is tested on small-scale granular avalanches. For laboratory experiments with confined granular avalanches interacting with a thin vertical dam, velocity and volume reductions are expressed as simple functions of the vertical dam height. The equation for the maximum run-out shortening is then calibrated on experimental data and used to predict the velocity reduction and the critical height for which the granular avalanche is entirely stopped by the vertical dam.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.coldregions.2004.04.002</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6023-2549</orcidid><orcidid>https://orcid.org/0000-0002-7175-5270</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0165-232X
ispartof Cold regions science and technology, 2004-10, Vol.39 (2), p.141-151
issn 0165-232X
1872-7441
language eng
recordid cdi_hal_primary_oai_HAL_hal_02583312v1
source ScienceDirect Journals (5 years ago - present)
subjects Avalanche dynamics
Dam
Environmental Sciences
Granular flows
Run-out shortening
title An equation for spreading length, center of mass and maximum run-out shortenings of dense avalanche flows by vertical obstacles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20equation%20for%20spreading%20length,%20center%20of%20mass%20and%20maximum%20run-out%20shortenings%20of%20dense%20avalanche%20flows%20by%20vertical%20obstacles&rft.jtitle=Cold%20regions%20science%20and%20technology&rft.au=Faug,%20T.&rft.date=2004-10-01&rft.volume=39&rft.issue=2&rft.spage=141&rft.epage=151&rft.pages=141-151&rft.issn=0165-232X&rft.eissn=1872-7441&rft_id=info:doi/10.1016/j.coldregions.2004.04.002&rft_dat=%3Cproquest_hal_p%3E28297337%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18046007&rft_id=info:pmid/&rft_els_id=S0165232X04000400&rfr_iscdi=true