Robustness of models developed by multivariate calibration. Part I: The assessment of robustness

Monitoring products for quality assurance in real-time during industrial processes has become of great importance in recent years. Infrared spectroscopic (IRS) techniques combined with multivariate calibration methods are primarily used for on-line analysis, in situ sensors or automatic sampling. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TrAC, Trends in analytical chemistry (Regular ed.) Trends in analytical chemistry (Regular ed.), 2004, Vol.23 (2), p.157-170
Hauptverfasser: Zeaiter, M., Roger, J.-M., Bellon-Maurel, V., Rutledge, D.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue 2
container_start_page 157
container_title TrAC, Trends in analytical chemistry (Regular ed.)
container_volume 23
creator Zeaiter, M.
Roger, J.-M.
Bellon-Maurel, V.
Rutledge, D.N.
description Monitoring products for quality assurance in real-time during industrial processes has become of great importance in recent years. Infrared spectroscopic (IRS) techniques combined with multivariate calibration methods are primarily used for on-line analysis, in situ sensors or automatic sampling. In order to ensure the correct use of these methods for routine industrial use, all the mechanical and the environmental conditions need to be taken into account, as well as the introduction of time delays and signal bias during sampling. This requires a robustness study of the IRS measurement and the calibration model used. In this review, we focus on both identifying the “robustness” used for multivariate calibration and the different methods applied to evaluate this robustness, especially with regard to the IRS technique used in industry. We also present and discuss various criteria intended for robustness assessment.
doi_str_mv 10.1016/S0165-9936(04)00307-3
format Article
fullrecord <record><control><sourceid>hal_pasca</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02582972v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165993604003073</els_id><sourcerecordid>oai_HAL_hal_02582972v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-e273t-9f6f32f0b2d63af8962e2012d1d789a265cf9a25dfcaf5b77443b988c50863</originalsourceid><addsrcrecordid>eNo9kVFLwzAUhYMoOKc_QciL4B6qN0mbNr7IGOoGA2XuPaZNwiJdO5KssH9vu8le7oHLdw_ccxC6J_BEgPDn735kiRCMP0I6AWCQJ-wCjUiRi4SRlF6i0Rm5Rjch_AIABxAj9LNqy32IjQkBtxZvW23qgLXpTN3ujMblAW_3dXSd8k5FgytVu9Kr6NrmCX8pH_HiBa83BqsQeo-taeLg48-ut-jKqjqYu38do9X723o2T5afH4vZdJkYmrOYCMstoxZKqjlTthCcGgqEaqLzQijKs8r2kmlbKZuVeZ6mrBRFUWVQcDZGk5PpRtVy591W-YNslZPz6VIOO6BZQUVOO9KzDyd2p0L_jfWqqVw4X5GMkz4m6LnXE9cHYjpnvAyVM01ltPOmilK3ThKQQwPy2IAc4pWQymMDkrE_OJ16Cw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robustness of models developed by multivariate calibration. Part I: The assessment of robustness</title><source>Elsevier ScienceDirect Journals</source><creator>Zeaiter, M. ; Roger, J.-M. ; Bellon-Maurel, V. ; Rutledge, D.N.</creator><creatorcontrib>Zeaiter, M. ; Roger, J.-M. ; Bellon-Maurel, V. ; Rutledge, D.N.</creatorcontrib><description>Monitoring products for quality assurance in real-time during industrial processes has become of great importance in recent years. Infrared spectroscopic (IRS) techniques combined with multivariate calibration methods are primarily used for on-line analysis, in situ sensors or automatic sampling. In order to ensure the correct use of these methods for routine industrial use, all the mechanical and the environmental conditions need to be taken into account, as well as the introduction of time delays and signal bias during sampling. This requires a robustness study of the IRS measurement and the calibration model used. In this review, we focus on both identifying the “robustness” used for multivariate calibration and the different methods applied to evaluate this robustness, especially with regard to the IRS technique used in industry. We also present and discuss various criteria intended for robustness assessment.</description><identifier>ISSN: 0165-9936</identifier><identifier>EISSN: 1879-3142</identifier><identifier>EISSN: 0165-9936</identifier><identifier>DOI: 10.1016/S0165-9936(04)00307-3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical chemistry ; Applied sciences ; Chemistry ; Environmental Sciences ; Exact sciences and technology ; Experimental design ; General, instrumentation ; Global environmental pollution ; IR spectroscopy ; Multivariate calibration ; On-line analysis ; Pollution ; Robustness ; Robustness criteria ; Spectrometric and optical methods</subject><ispartof>TrAC, Trends in analytical chemistry (Regular ed.), 2004, Vol.23 (2), p.157-170</ispartof><rights>2003</rights><rights>2006 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2123-5266 ; 0000-0001-5634-0766 ; 0000-0001-9337-3604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165993604003073$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15619360$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02582972$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeaiter, M.</creatorcontrib><creatorcontrib>Roger, J.-M.</creatorcontrib><creatorcontrib>Bellon-Maurel, V.</creatorcontrib><creatorcontrib>Rutledge, D.N.</creatorcontrib><title>Robustness of models developed by multivariate calibration. Part I: The assessment of robustness</title><title>TrAC, Trends in analytical chemistry (Regular ed.)</title><description>Monitoring products for quality assurance in real-time during industrial processes has become of great importance in recent years. Infrared spectroscopic (IRS) techniques combined with multivariate calibration methods are primarily used for on-line analysis, in situ sensors or automatic sampling. In order to ensure the correct use of these methods for routine industrial use, all the mechanical and the environmental conditions need to be taken into account, as well as the introduction of time delays and signal bias during sampling. This requires a robustness study of the IRS measurement and the calibration model used. In this review, we focus on both identifying the “robustness” used for multivariate calibration and the different methods applied to evaluate this robustness, especially with regard to the IRS technique used in industry. We also present and discuss various criteria intended for robustness assessment.</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Experimental design</subject><subject>General, instrumentation</subject><subject>Global environmental pollution</subject><subject>IR spectroscopy</subject><subject>Multivariate calibration</subject><subject>On-line analysis</subject><subject>Pollution</subject><subject>Robustness</subject><subject>Robustness criteria</subject><subject>Spectrometric and optical methods</subject><issn>0165-9936</issn><issn>1879-3142</issn><issn>0165-9936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNo9kVFLwzAUhYMoOKc_QciL4B6qN0mbNr7IGOoGA2XuPaZNwiJdO5KssH9vu8le7oHLdw_ccxC6J_BEgPDn735kiRCMP0I6AWCQJ-wCjUiRi4SRlF6i0Rm5Rjch_AIABxAj9LNqy32IjQkBtxZvW23qgLXpTN3ujMblAW_3dXSd8k5FgytVu9Kr6NrmCX8pH_HiBa83BqsQeo-taeLg48-ut-jKqjqYu38do9X723o2T5afH4vZdJkYmrOYCMstoxZKqjlTthCcGgqEaqLzQijKs8r2kmlbKZuVeZ6mrBRFUWVQcDZGk5PpRtVy591W-YNslZPz6VIOO6BZQUVOO9KzDyd2p0L_jfWqqVw4X5GMkz4m6LnXE9cHYjpnvAyVM01ltPOmilK3ThKQQwPy2IAc4pWQymMDkrE_OJ16Cw</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Zeaiter, M.</creator><creator>Roger, J.-M.</creator><creator>Bellon-Maurel, V.</creator><creator>Rutledge, D.N.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2123-5266</orcidid><orcidid>https://orcid.org/0000-0001-5634-0766</orcidid><orcidid>https://orcid.org/0000-0001-9337-3604</orcidid></search><sort><creationdate>2004</creationdate><title>Robustness of models developed by multivariate calibration. Part I: The assessment of robustness</title><author>Zeaiter, M. ; Roger, J.-M. ; Bellon-Maurel, V. ; Rutledge, D.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e273t-9f6f32f0b2d63af8962e2012d1d789a265cf9a25dfcaf5b77443b988c50863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Experimental design</topic><topic>General, instrumentation</topic><topic>Global environmental pollution</topic><topic>IR spectroscopy</topic><topic>Multivariate calibration</topic><topic>On-line analysis</topic><topic>Pollution</topic><topic>Robustness</topic><topic>Robustness criteria</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeaiter, M.</creatorcontrib><creatorcontrib>Roger, J.-M.</creatorcontrib><creatorcontrib>Bellon-Maurel, V.</creatorcontrib><creatorcontrib>Rutledge, D.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>TrAC, Trends in analytical chemistry (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeaiter, M.</au><au>Roger, J.-M.</au><au>Bellon-Maurel, V.</au><au>Rutledge, D.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustness of models developed by multivariate calibration. Part I: The assessment of robustness</atitle><jtitle>TrAC, Trends in analytical chemistry (Regular ed.)</jtitle><date>2004</date><risdate>2004</risdate><volume>23</volume><issue>2</issue><spage>157</spage><epage>170</epage><pages>157-170</pages><issn>0165-9936</issn><eissn>1879-3142</eissn><eissn>0165-9936</eissn><abstract>Monitoring products for quality assurance in real-time during industrial processes has become of great importance in recent years. Infrared spectroscopic (IRS) techniques combined with multivariate calibration methods are primarily used for on-line analysis, in situ sensors or automatic sampling. In order to ensure the correct use of these methods for routine industrial use, all the mechanical and the environmental conditions need to be taken into account, as well as the introduction of time delays and signal bias during sampling. This requires a robustness study of the IRS measurement and the calibration model used. In this review, we focus on both identifying the “robustness” used for multivariate calibration and the different methods applied to evaluate this robustness, especially with regard to the IRS technique used in industry. We also present and discuss various criteria intended for robustness assessment.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0165-9936(04)00307-3</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2123-5266</orcidid><orcidid>https://orcid.org/0000-0001-5634-0766</orcidid><orcidid>https://orcid.org/0000-0001-9337-3604</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0165-9936
ispartof TrAC, Trends in analytical chemistry (Regular ed.), 2004, Vol.23 (2), p.157-170
issn 0165-9936
1879-3142
0165-9936
language eng
recordid cdi_hal_primary_oai_HAL_hal_02582972v1
source Elsevier ScienceDirect Journals
subjects Analytical chemistry
Applied sciences
Chemistry
Environmental Sciences
Exact sciences and technology
Experimental design
General, instrumentation
Global environmental pollution
IR spectroscopy
Multivariate calibration
On-line analysis
Pollution
Robustness
Robustness criteria
Spectrometric and optical methods
title Robustness of models developed by multivariate calibration. Part I: The assessment of robustness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustness%20of%20models%20developed%20by%20multivariate%20calibration.%20Part%20I:%20The%20assessment%20of%20robustness&rft.jtitle=TrAC,%20Trends%20in%20analytical%20chemistry%20(Regular%20ed.)&rft.au=Zeaiter,%20M.&rft.date=2004&rft.volume=23&rft.issue=2&rft.spage=157&rft.epage=170&rft.pages=157-170&rft.issn=0165-9936&rft.eissn=1879-3142&rft_id=info:doi/10.1016/S0165-9936(04)00307-3&rft_dat=%3Chal_pasca%3Eoai_HAL_hal_02582972v1%3C/hal_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0165993604003073&rfr_iscdi=true