Robustness of models developed by multivariate calibration. Part I: The assessment of robustness
Monitoring products for quality assurance in real-time during industrial processes has become of great importance in recent years. Infrared spectroscopic (IRS) techniques combined with multivariate calibration methods are primarily used for on-line analysis, in situ sensors or automatic sampling. In...
Gespeichert in:
Veröffentlicht in: | TrAC, Trends in analytical chemistry (Regular ed.) Trends in analytical chemistry (Regular ed.), 2004, Vol.23 (2), p.157-170 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170 |
---|---|
container_issue | 2 |
container_start_page | 157 |
container_title | TrAC, Trends in analytical chemistry (Regular ed.) |
container_volume | 23 |
creator | Zeaiter, M. Roger, J.-M. Bellon-Maurel, V. Rutledge, D.N. |
description | Monitoring products for quality assurance in real-time during industrial processes has become of great importance in recent years. Infrared spectroscopic (IRS) techniques combined with multivariate calibration methods are primarily used for on-line analysis, in situ sensors or automatic sampling. In order to ensure the correct use of these methods for routine industrial use, all the mechanical and the environmental conditions need to be taken into account, as well as the introduction of time delays and signal bias during sampling. This requires a robustness study of the IRS measurement and the calibration model used. In this review, we focus on both identifying the “robustness” used for multivariate calibration and the different methods applied to evaluate this robustness, especially with regard to the IRS technique used in industry. We also present and discuss various criteria intended for robustness assessment. |
doi_str_mv | 10.1016/S0165-9936(04)00307-3 |
format | Article |
fullrecord | <record><control><sourceid>hal_pasca</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02582972v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165993604003073</els_id><sourcerecordid>oai_HAL_hal_02582972v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-e273t-9f6f32f0b2d63af8962e2012d1d789a265cf9a25dfcaf5b77443b988c50863</originalsourceid><addsrcrecordid>eNo9kVFLwzAUhYMoOKc_QciL4B6qN0mbNr7IGOoGA2XuPaZNwiJdO5KssH9vu8le7oHLdw_ccxC6J_BEgPDn735kiRCMP0I6AWCQJ-wCjUiRi4SRlF6i0Rm5Rjch_AIABxAj9LNqy32IjQkBtxZvW23qgLXpTN3ujMblAW_3dXSd8k5FgytVu9Kr6NrmCX8pH_HiBa83BqsQeo-taeLg48-ut-jKqjqYu38do9X723o2T5afH4vZdJkYmrOYCMstoxZKqjlTthCcGgqEaqLzQijKs8r2kmlbKZuVeZ6mrBRFUWVQcDZGk5PpRtVy591W-YNslZPz6VIOO6BZQUVOO9KzDyd2p0L_jfWqqVw4X5GMkz4m6LnXE9cHYjpnvAyVM01ltPOmilK3ThKQQwPy2IAc4pWQymMDkrE_OJ16Cw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robustness of models developed by multivariate calibration. Part I: The assessment of robustness</title><source>Elsevier ScienceDirect Journals</source><creator>Zeaiter, M. ; Roger, J.-M. ; Bellon-Maurel, V. ; Rutledge, D.N.</creator><creatorcontrib>Zeaiter, M. ; Roger, J.-M. ; Bellon-Maurel, V. ; Rutledge, D.N.</creatorcontrib><description>Monitoring products for quality assurance in real-time during industrial processes has become of great importance in recent years. Infrared spectroscopic (IRS) techniques combined with multivariate calibration methods are primarily used for on-line analysis, in situ sensors or automatic sampling. In order to ensure the correct use of these methods for routine industrial use, all the mechanical and the environmental conditions need to be taken into account, as well as the introduction of time delays and signal bias during sampling. This requires a robustness study of the IRS measurement and the calibration model used. In this review, we focus on both identifying the “robustness” used for multivariate calibration and the different methods applied to evaluate this robustness, especially with regard to the IRS technique used in industry. We also present and discuss various criteria intended for robustness assessment.</description><identifier>ISSN: 0165-9936</identifier><identifier>EISSN: 1879-3142</identifier><identifier>EISSN: 0165-9936</identifier><identifier>DOI: 10.1016/S0165-9936(04)00307-3</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical chemistry ; Applied sciences ; Chemistry ; Environmental Sciences ; Exact sciences and technology ; Experimental design ; General, instrumentation ; Global environmental pollution ; IR spectroscopy ; Multivariate calibration ; On-line analysis ; Pollution ; Robustness ; Robustness criteria ; Spectrometric and optical methods</subject><ispartof>TrAC, Trends in analytical chemistry (Regular ed.), 2004, Vol.23 (2), p.157-170</ispartof><rights>2003</rights><rights>2006 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2123-5266 ; 0000-0001-5634-0766 ; 0000-0001-9337-3604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165993604003073$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15619360$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02582972$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeaiter, M.</creatorcontrib><creatorcontrib>Roger, J.-M.</creatorcontrib><creatorcontrib>Bellon-Maurel, V.</creatorcontrib><creatorcontrib>Rutledge, D.N.</creatorcontrib><title>Robustness of models developed by multivariate calibration. Part I: The assessment of robustness</title><title>TrAC, Trends in analytical chemistry (Regular ed.)</title><description>Monitoring products for quality assurance in real-time during industrial processes has become of great importance in recent years. Infrared spectroscopic (IRS) techniques combined with multivariate calibration methods are primarily used for on-line analysis, in situ sensors or automatic sampling. In order to ensure the correct use of these methods for routine industrial use, all the mechanical and the environmental conditions need to be taken into account, as well as the introduction of time delays and signal bias during sampling. This requires a robustness study of the IRS measurement and the calibration model used. In this review, we focus on both identifying the “robustness” used for multivariate calibration and the different methods applied to evaluate this robustness, especially with regard to the IRS technique used in industry. We also present and discuss various criteria intended for robustness assessment.</description><subject>Analytical chemistry</subject><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Environmental Sciences</subject><subject>Exact sciences and technology</subject><subject>Experimental design</subject><subject>General, instrumentation</subject><subject>Global environmental pollution</subject><subject>IR spectroscopy</subject><subject>Multivariate calibration</subject><subject>On-line analysis</subject><subject>Pollution</subject><subject>Robustness</subject><subject>Robustness criteria</subject><subject>Spectrometric and optical methods</subject><issn>0165-9936</issn><issn>1879-3142</issn><issn>0165-9936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNo9kVFLwzAUhYMoOKc_QciL4B6qN0mbNr7IGOoGA2XuPaZNwiJdO5KssH9vu8le7oHLdw_ccxC6J_BEgPDn735kiRCMP0I6AWCQJ-wCjUiRi4SRlF6i0Rm5Rjch_AIABxAj9LNqy32IjQkBtxZvW23qgLXpTN3ujMblAW_3dXSd8k5FgytVu9Kr6NrmCX8pH_HiBa83BqsQeo-taeLg48-ut-jKqjqYu38do9X723o2T5afH4vZdJkYmrOYCMstoxZKqjlTthCcGgqEaqLzQijKs8r2kmlbKZuVeZ6mrBRFUWVQcDZGk5PpRtVy591W-YNslZPz6VIOO6BZQUVOO9KzDyd2p0L_jfWqqVw4X5GMkz4m6LnXE9cHYjpnvAyVM01ltPOmilK3ThKQQwPy2IAc4pWQymMDkrE_OJ16Cw</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Zeaiter, M.</creator><creator>Roger, J.-M.</creator><creator>Bellon-Maurel, V.</creator><creator>Rutledge, D.N.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2123-5266</orcidid><orcidid>https://orcid.org/0000-0001-5634-0766</orcidid><orcidid>https://orcid.org/0000-0001-9337-3604</orcidid></search><sort><creationdate>2004</creationdate><title>Robustness of models developed by multivariate calibration. Part I: The assessment of robustness</title><author>Zeaiter, M. ; Roger, J.-M. ; Bellon-Maurel, V. ; Rutledge, D.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e273t-9f6f32f0b2d63af8962e2012d1d789a265cf9a25dfcaf5b77443b988c50863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analytical chemistry</topic><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Environmental Sciences</topic><topic>Exact sciences and technology</topic><topic>Experimental design</topic><topic>General, instrumentation</topic><topic>Global environmental pollution</topic><topic>IR spectroscopy</topic><topic>Multivariate calibration</topic><topic>On-line analysis</topic><topic>Pollution</topic><topic>Robustness</topic><topic>Robustness criteria</topic><topic>Spectrometric and optical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeaiter, M.</creatorcontrib><creatorcontrib>Roger, J.-M.</creatorcontrib><creatorcontrib>Bellon-Maurel, V.</creatorcontrib><creatorcontrib>Rutledge, D.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>TrAC, Trends in analytical chemistry (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeaiter, M.</au><au>Roger, J.-M.</au><au>Bellon-Maurel, V.</au><au>Rutledge, D.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robustness of models developed by multivariate calibration. Part I: The assessment of robustness</atitle><jtitle>TrAC, Trends in analytical chemistry (Regular ed.)</jtitle><date>2004</date><risdate>2004</risdate><volume>23</volume><issue>2</issue><spage>157</spage><epage>170</epage><pages>157-170</pages><issn>0165-9936</issn><eissn>1879-3142</eissn><eissn>0165-9936</eissn><abstract>Monitoring products for quality assurance in real-time during industrial processes has become of great importance in recent years. Infrared spectroscopic (IRS) techniques combined with multivariate calibration methods are primarily used for on-line analysis, in situ sensors or automatic sampling. In order to ensure the correct use of these methods for routine industrial use, all the mechanical and the environmental conditions need to be taken into account, as well as the introduction of time delays and signal bias during sampling. This requires a robustness study of the IRS measurement and the calibration model used. In this review, we focus on both identifying the “robustness” used for multivariate calibration and the different methods applied to evaluate this robustness, especially with regard to the IRS technique used in industry. We also present and discuss various criteria intended for robustness assessment.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0165-9936(04)00307-3</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2123-5266</orcidid><orcidid>https://orcid.org/0000-0001-5634-0766</orcidid><orcidid>https://orcid.org/0000-0001-9337-3604</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-9936 |
ispartof | TrAC, Trends in analytical chemistry (Regular ed.), 2004, Vol.23 (2), p.157-170 |
issn | 0165-9936 1879-3142 0165-9936 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02582972v1 |
source | Elsevier ScienceDirect Journals |
subjects | Analytical chemistry Applied sciences Chemistry Environmental Sciences Exact sciences and technology Experimental design General, instrumentation Global environmental pollution IR spectroscopy Multivariate calibration On-line analysis Pollution Robustness Robustness criteria Spectrometric and optical methods |
title | Robustness of models developed by multivariate calibration. Part I: The assessment of robustness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robustness%20of%20models%20developed%20by%20multivariate%20calibration.%20Part%20I:%20The%20assessment%20of%20robustness&rft.jtitle=TrAC,%20Trends%20in%20analytical%20chemistry%20(Regular%20ed.)&rft.au=Zeaiter,%20M.&rft.date=2004&rft.volume=23&rft.issue=2&rft.spage=157&rft.epage=170&rft.pages=157-170&rft.issn=0165-9936&rft.eissn=1879-3142&rft_id=info:doi/10.1016/S0165-9936(04)00307-3&rft_dat=%3Chal_pasca%3Eoai_HAL_hal_02582972v1%3C/hal_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0165993604003073&rfr_iscdi=true |