Infrared‐Assisted Synthesis of Prebiotic Glycine

A novel approach has been developed to synthesize complex organic molecules (COMs) relevant to prebiotic chemistry, using infrared (IR) radiation to trigger the reaction. An original laboratory reactor working at low gas density and using IR irradiation was developed. In this way, glycine, the simpl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2020-03, Vol.21 (6), p.503-509
Hauptverfasser: Scuderi, Debora, Pérez‐Mellor, Ariel, Lemaire, Joël, Indrajith, Suvasthika, Bardaud, Jean‐Xavier, Largo, Antonio, Jeanvoine, Yannick, Spezia, Riccardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 509
container_issue 6
container_start_page 503
container_title Chemphyschem
container_volume 21
creator Scuderi, Debora
Pérez‐Mellor, Ariel
Lemaire, Joël
Indrajith, Suvasthika
Bardaud, Jean‐Xavier
Largo, Antonio
Jeanvoine, Yannick
Spezia, Riccardo
description A novel approach has been developed to synthesize complex organic molecules (COMs) relevant to prebiotic chemistry, using infrared (IR) radiation to trigger the reaction. An original laboratory reactor working at low gas density and using IR irradiation was developed. In this way, glycine, the simplest brick of life, has been synthesized by assisting ion–molecule reaction with IR laser light. The ion‐molecule complex constituted by acetic acid and hydroxylamine was formed in a mass spectrometer reactor and then irradiated with IR photons. As photoproducts, we obtained both glycine structures and some of its isomers. Anharmonic vibrational frequency calculations and fragmentation dynamics simulations allow for a better interpretation of the experimental data. This novel approach can be now extended to study other new synthetic pathways responsible for the formation of further COMs also with potential prebiotic relevance. Triggered by IR: Glycine was synthetized under low‐density conditions assisted by IR photons.
doi_str_mv 10.1002/cphc.202000065
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02565776v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377245331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4845-7099fe2b8685f4c092bf8b6570a9da487b0fa69553f5f4f23be171305b1c78a3</originalsourceid><addsrcrecordid>eNqF0M9KwzAABvAgipvTq0cZeNFDZ_42zXEU3QYDB-4e0jRhHV07k03pzUfwGX0SUzoneLGXNMkvH8kHwDWCIwQhftDblR5hiGH4YnYC-ogSEfGYotPDP8WE9cCF9-tAEsjROegRJASkmPcBnlXWKWfyr4_PsfeF35l8-NJUu5UJk2FthwtnsqLeFXo4KRtdVOYSnFlVenN1GAdg-fS4TKfR_HkyS8fzSNOEsohDIazBWRInzFINBc5sksWMQyVyRROeQatiwRixYd9ikhnEEYEsQ5onigzAfRe7UqXcumKjXCNrVcjpeC7bNYhZSOPxGwr2rrNbV7_ujd_JTeG1KUtVmXrvJSaUM0gS1tLbP3Rd710VHhIU55gyQlo16pR2tffO2OMNEJRt8bItXh6LDwduDrH7bGPyI_9pOgDRgfeiNM0_cTJdTNPf8G_YGoza</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377245331</pqid></control><display><type>article</type><title>Infrared‐Assisted Synthesis of Prebiotic Glycine</title><source>Access via Wiley Online Library</source><creator>Scuderi, Debora ; Pérez‐Mellor, Ariel ; Lemaire, Joël ; Indrajith, Suvasthika ; Bardaud, Jean‐Xavier ; Largo, Antonio ; Jeanvoine, Yannick ; Spezia, Riccardo</creator><creatorcontrib>Scuderi, Debora ; Pérez‐Mellor, Ariel ; Lemaire, Joël ; Indrajith, Suvasthika ; Bardaud, Jean‐Xavier ; Largo, Antonio ; Jeanvoine, Yannick ; Spezia, Riccardo</creatorcontrib><description>A novel approach has been developed to synthesize complex organic molecules (COMs) relevant to prebiotic chemistry, using infrared (IR) radiation to trigger the reaction. An original laboratory reactor working at low gas density and using IR irradiation was developed. In this way, glycine, the simplest brick of life, has been synthesized by assisting ion–molecule reaction with IR laser light. The ion‐molecule complex constituted by acetic acid and hydroxylamine was formed in a mass spectrometer reactor and then irradiated with IR photons. As photoproducts, we obtained both glycine structures and some of its isomers. Anharmonic vibrational frequency calculations and fragmentation dynamics simulations allow for a better interpretation of the experimental data. This novel approach can be now extended to study other new synthetic pathways responsible for the formation of further COMs also with potential prebiotic relevance. Triggered by IR: Glycine was synthetized under low‐density conditions assisted by IR photons.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.202000065</identifier><identifier>PMID: 31990427</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acetic acid ; Anharmonicity ; Chemical Physics ; Chemical synthesis ; complex organic molecules ; Gas density ; Glycine ; Infrared radiation ; ion-molecule reactions ; IR-assisted synthesis ; Irradiation ; Isomers ; Organic chemistry ; Physics ; prebiotic chemistry ; Prebiotics</subject><ispartof>Chemphyschem, 2020-03, Vol.21 (6), p.503-509</ispartof><rights>2020 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4845-7099fe2b8685f4c092bf8b6570a9da487b0fa69553f5f4f23be171305b1c78a3</citedby><cites>FETCH-LOGICAL-c4845-7099fe2b8685f4c092bf8b6570a9da487b0fa69553f5f4f23be171305b1c78a3</cites><orcidid>0000-0003-3931-8481 ; 0000-0003-4959-4850 ; 0000-0001-5160-489X ; 0000-0001-8464-4505 ; 0000-0002-1429-9379 ; 0000-0002-3134-328X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.202000065$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.202000065$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31990427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02565776$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Scuderi, Debora</creatorcontrib><creatorcontrib>Pérez‐Mellor, Ariel</creatorcontrib><creatorcontrib>Lemaire, Joël</creatorcontrib><creatorcontrib>Indrajith, Suvasthika</creatorcontrib><creatorcontrib>Bardaud, Jean‐Xavier</creatorcontrib><creatorcontrib>Largo, Antonio</creatorcontrib><creatorcontrib>Jeanvoine, Yannick</creatorcontrib><creatorcontrib>Spezia, Riccardo</creatorcontrib><title>Infrared‐Assisted Synthesis of Prebiotic Glycine</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>A novel approach has been developed to synthesize complex organic molecules (COMs) relevant to prebiotic chemistry, using infrared (IR) radiation to trigger the reaction. An original laboratory reactor working at low gas density and using IR irradiation was developed. In this way, glycine, the simplest brick of life, has been synthesized by assisting ion–molecule reaction with IR laser light. The ion‐molecule complex constituted by acetic acid and hydroxylamine was formed in a mass spectrometer reactor and then irradiated with IR photons. As photoproducts, we obtained both glycine structures and some of its isomers. Anharmonic vibrational frequency calculations and fragmentation dynamics simulations allow for a better interpretation of the experimental data. This novel approach can be now extended to study other new synthetic pathways responsible for the formation of further COMs also with potential prebiotic relevance. Triggered by IR: Glycine was synthetized under low‐density conditions assisted by IR photons.</description><subject>Acetic acid</subject><subject>Anharmonicity</subject><subject>Chemical Physics</subject><subject>Chemical synthesis</subject><subject>complex organic molecules</subject><subject>Gas density</subject><subject>Glycine</subject><subject>Infrared radiation</subject><subject>ion-molecule reactions</subject><subject>IR-assisted synthesis</subject><subject>Irradiation</subject><subject>Isomers</subject><subject>Organic chemistry</subject><subject>Physics</subject><subject>prebiotic chemistry</subject><subject>Prebiotics</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqF0M9KwzAABvAgipvTq0cZeNFDZ_42zXEU3QYDB-4e0jRhHV07k03pzUfwGX0SUzoneLGXNMkvH8kHwDWCIwQhftDblR5hiGH4YnYC-ogSEfGYotPDP8WE9cCF9-tAEsjROegRJASkmPcBnlXWKWfyr4_PsfeF35l8-NJUu5UJk2FthwtnsqLeFXo4KRtdVOYSnFlVenN1GAdg-fS4TKfR_HkyS8fzSNOEsohDIazBWRInzFINBc5sksWMQyVyRROeQatiwRixYd9ikhnEEYEsQ5onigzAfRe7UqXcumKjXCNrVcjpeC7bNYhZSOPxGwr2rrNbV7_ujd_JTeG1KUtVmXrvJSaUM0gS1tLbP3Rd710VHhIU55gyQlo16pR2tffO2OMNEJRt8bItXh6LDwduDrH7bGPyI_9pOgDRgfeiNM0_cTJdTNPf8G_YGoza</recordid><startdate>20200317</startdate><enddate>20200317</enddate><creator>Scuderi, Debora</creator><creator>Pérez‐Mellor, Ariel</creator><creator>Lemaire, Joël</creator><creator>Indrajith, Suvasthika</creator><creator>Bardaud, Jean‐Xavier</creator><creator>Largo, Antonio</creator><creator>Jeanvoine, Yannick</creator><creator>Spezia, Riccardo</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3931-8481</orcidid><orcidid>https://orcid.org/0000-0003-4959-4850</orcidid><orcidid>https://orcid.org/0000-0001-5160-489X</orcidid><orcidid>https://orcid.org/0000-0001-8464-4505</orcidid><orcidid>https://orcid.org/0000-0002-1429-9379</orcidid><orcidid>https://orcid.org/0000-0002-3134-328X</orcidid></search><sort><creationdate>20200317</creationdate><title>Infrared‐Assisted Synthesis of Prebiotic Glycine</title><author>Scuderi, Debora ; Pérez‐Mellor, Ariel ; Lemaire, Joël ; Indrajith, Suvasthika ; Bardaud, Jean‐Xavier ; Largo, Antonio ; Jeanvoine, Yannick ; Spezia, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4845-7099fe2b8685f4c092bf8b6570a9da487b0fa69553f5f4f23be171305b1c78a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetic acid</topic><topic>Anharmonicity</topic><topic>Chemical Physics</topic><topic>Chemical synthesis</topic><topic>complex organic molecules</topic><topic>Gas density</topic><topic>Glycine</topic><topic>Infrared radiation</topic><topic>ion-molecule reactions</topic><topic>IR-assisted synthesis</topic><topic>Irradiation</topic><topic>Isomers</topic><topic>Organic chemistry</topic><topic>Physics</topic><topic>prebiotic chemistry</topic><topic>Prebiotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scuderi, Debora</creatorcontrib><creatorcontrib>Pérez‐Mellor, Ariel</creatorcontrib><creatorcontrib>Lemaire, Joël</creatorcontrib><creatorcontrib>Indrajith, Suvasthika</creatorcontrib><creatorcontrib>Bardaud, Jean‐Xavier</creatorcontrib><creatorcontrib>Largo, Antonio</creatorcontrib><creatorcontrib>Jeanvoine, Yannick</creatorcontrib><creatorcontrib>Spezia, Riccardo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scuderi, Debora</au><au>Pérez‐Mellor, Ariel</au><au>Lemaire, Joël</au><au>Indrajith, Suvasthika</au><au>Bardaud, Jean‐Xavier</au><au>Largo, Antonio</au><au>Jeanvoine, Yannick</au><au>Spezia, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared‐Assisted Synthesis of Prebiotic Glycine</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2020-03-17</date><risdate>2020</risdate><volume>21</volume><issue>6</issue><spage>503</spage><epage>509</epage><pages>503-509</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>A novel approach has been developed to synthesize complex organic molecules (COMs) relevant to prebiotic chemistry, using infrared (IR) radiation to trigger the reaction. An original laboratory reactor working at low gas density and using IR irradiation was developed. In this way, glycine, the simplest brick of life, has been synthesized by assisting ion–molecule reaction with IR laser light. The ion‐molecule complex constituted by acetic acid and hydroxylamine was formed in a mass spectrometer reactor and then irradiated with IR photons. As photoproducts, we obtained both glycine structures and some of its isomers. Anharmonic vibrational frequency calculations and fragmentation dynamics simulations allow for a better interpretation of the experimental data. This novel approach can be now extended to study other new synthetic pathways responsible for the formation of further COMs also with potential prebiotic relevance. Triggered by IR: Glycine was synthetized under low‐density conditions assisted by IR photons.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31990427</pmid><doi>10.1002/cphc.202000065</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3931-8481</orcidid><orcidid>https://orcid.org/0000-0003-4959-4850</orcidid><orcidid>https://orcid.org/0000-0001-5160-489X</orcidid><orcidid>https://orcid.org/0000-0001-8464-4505</orcidid><orcidid>https://orcid.org/0000-0002-1429-9379</orcidid><orcidid>https://orcid.org/0000-0002-3134-328X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2020-03, Vol.21 (6), p.503-509
issn 1439-4235
1439-7641
language eng
recordid cdi_hal_primary_oai_HAL_hal_02565776v1
source Access via Wiley Online Library
subjects Acetic acid
Anharmonicity
Chemical Physics
Chemical synthesis
complex organic molecules
Gas density
Glycine
Infrared radiation
ion-molecule reactions
IR-assisted synthesis
Irradiation
Isomers
Organic chemistry
Physics
prebiotic chemistry
Prebiotics
title Infrared‐Assisted Synthesis of Prebiotic Glycine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A29%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%E2%80%90Assisted%20Synthesis%20of%20Prebiotic%20Glycine&rft.jtitle=Chemphyschem&rft.au=Scuderi,%20Debora&rft.date=2020-03-17&rft.volume=21&rft.issue=6&rft.spage=503&rft.epage=509&rft.pages=503-509&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.202000065&rft_dat=%3Cproquest_hal_p%3E2377245331%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377245331&rft_id=info:pmid/31990427&rfr_iscdi=true