The 2020 motile active matter roadmap
Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2020-05, Vol.32 (19), p.193001-193001 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 193001 |
---|---|
container_issue | 19 |
container_start_page | 193001 |
container_title | Journal of physics. Condensed matter |
container_volume | 32 |
creator | Gompper, Gerhard Winkler, Roland G Speck, Thomas Solon, Alexandre Nardini, Cesare Peruani, Fernando Löwen, Hartmut Golestanian, Ramin Kaupp, U Benjamin Alvarez, Luis Kiørboe, Thomas Lauga, Eric Poon, Wilson C K DeSimone, Antonio Muiños-Landin, Santiago Fischer, Alexander Söker, Nicola A Cichos, Frank Kapral, Raymond Gaspard, Pierre Ripoll, Marisol Sagues, Francesc Doostmohammadi, Amin Yeomans, Julia M Aranson, Igor S Bechinger, Clemens Stark, Holger Hemelrijk, Charlotte K Nedelec, François J Sarkar, Trinish Aryaksama, Thibault Lacroix, Mathilde Duclos, Guillaume Yashunsky, Victor Silberzan, Pascal Arroyo, Marino Kale, Sohan |
description | Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area. |
doi_str_mv | 10.1088/1361-648X/ab6348 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02565758v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2355977085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-a46600c4d363fe78f182d2af0c005da97173c6941bc1853ec874174edb0d8c703</originalsourceid><addsrcrecordid>eNo9kE1Lw0AURQdRbK3uXUk2gi5i32S-3ixLUSsU3FRwN0wmExpJTJ1JCv57G1K7enC59zw4hNxSeKKAOKdM0lRy_JzbXDKOZ2R6is7JFLRgKWrkE3IV4xcAcGT8kkxYBgK10lNyv9n6JIMMkqbtqton1nXV3ieN7TofktDaorG7a3JR2jr6m-OdkY-X581yla7fX9-Wi3XqOGKXWi4lgOMFk6z0CkuKWZHZEhyAKKxWVDEnNae5oyiYd6g4VdwXORToFLAZeRy5W1ubXagaG35NayuzWqzNkEEmpFAC9_TQfRi7u9D-9D52pqmi83Vtv33bR5MxIbRScHg0IzBWXWhjDL48sSmYQaQZrJnBmhlFHiZ3R3qfN744Df7NsT-scmq8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2355977085</pqid></control><display><type>article</type><title>The 2020 motile active matter roadmap</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Gompper, Gerhard ; Winkler, Roland G ; Speck, Thomas ; Solon, Alexandre ; Nardini, Cesare ; Peruani, Fernando ; Löwen, Hartmut ; Golestanian, Ramin ; Kaupp, U Benjamin ; Alvarez, Luis ; Kiørboe, Thomas ; Lauga, Eric ; Poon, Wilson C K ; DeSimone, Antonio ; Muiños-Landin, Santiago ; Fischer, Alexander ; Söker, Nicola A ; Cichos, Frank ; Kapral, Raymond ; Gaspard, Pierre ; Ripoll, Marisol ; Sagues, Francesc ; Doostmohammadi, Amin ; Yeomans, Julia M ; Aranson, Igor S ; Bechinger, Clemens ; Stark, Holger ; Hemelrijk, Charlotte K ; Nedelec, François J ; Sarkar, Trinish ; Aryaksama, Thibault ; Lacroix, Mathilde ; Duclos, Guillaume ; Yashunsky, Victor ; Silberzan, Pascal ; Arroyo, Marino ; Kale, Sohan</creator><creatorcontrib>Gompper, Gerhard ; Winkler, Roland G ; Speck, Thomas ; Solon, Alexandre ; Nardini, Cesare ; Peruani, Fernando ; Löwen, Hartmut ; Golestanian, Ramin ; Kaupp, U Benjamin ; Alvarez, Luis ; Kiørboe, Thomas ; Lauga, Eric ; Poon, Wilson C K ; DeSimone, Antonio ; Muiños-Landin, Santiago ; Fischer, Alexander ; Söker, Nicola A ; Cichos, Frank ; Kapral, Raymond ; Gaspard, Pierre ; Ripoll, Marisol ; Sagues, Francesc ; Doostmohammadi, Amin ; Yeomans, Julia M ; Aranson, Igor S ; Bechinger, Clemens ; Stark, Holger ; Hemelrijk, Charlotte K ; Nedelec, François J ; Sarkar, Trinish ; Aryaksama, Thibault ; Lacroix, Mathilde ; Duclos, Guillaume ; Yashunsky, Victor ; Silberzan, Pascal ; Arroyo, Marino ; Kale, Sohan</creatorcontrib><description>Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/1361-648X/ab6348</identifier><identifier>PMID: 32058979</identifier><language>eng</language><publisher>England: IOP Publishing [1989-....]</publisher><subject>Biological Physics ; Physics</subject><ispartof>Journal of physics. Condensed matter, 2020-05, Vol.32 (19), p.193001-193001</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-a46600c4d363fe78f182d2af0c005da97173c6941bc1853ec874174edb0d8c703</citedby><cites>FETCH-LOGICAL-c488t-a46600c4d363fe78f182d2af0c005da97173c6941bc1853ec874174edb0d8c703</cites><orcidid>0000-0001-5376-8062 ; 0000-0002-3149-4002 ; 0000-0002-8141-5288 ; 0000-0002-6388-5390 ; 0000-0002-8904-0986 ; 0000-0002-1116-4268 ; 0000-0003-1647-940X ; 0000-0002-1027-2291 ; 0000-0002-5496-5268 ; 0000-0002-7513-0796 ; 0000-0002-0696-6397 ; 0000-0002-2956-5676 ; 0000-0002-6357-1180 ; 0000-0001-6160-077X ; 0000-0002-9803-4975 ; 0000-0001-8268-5469 ; 0000-0002-0222-1347 ; 0000-0002-3265-336X ; 0000-0002-4652-645X ; 0000-0003-2985-8935 ; 0000-0002-8554-882X ; 0000-0003-0760-7940 ; 0000-0002-4062-5393 ; 0000-0002-8916-2545 ; 0000-0002-2632-3057 ; 0000-0001-9583-067X ; 0000-0002-2753-6839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32058979$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02565758$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gompper, Gerhard</creatorcontrib><creatorcontrib>Winkler, Roland G</creatorcontrib><creatorcontrib>Speck, Thomas</creatorcontrib><creatorcontrib>Solon, Alexandre</creatorcontrib><creatorcontrib>Nardini, Cesare</creatorcontrib><creatorcontrib>Peruani, Fernando</creatorcontrib><creatorcontrib>Löwen, Hartmut</creatorcontrib><creatorcontrib>Golestanian, Ramin</creatorcontrib><creatorcontrib>Kaupp, U Benjamin</creatorcontrib><creatorcontrib>Alvarez, Luis</creatorcontrib><creatorcontrib>Kiørboe, Thomas</creatorcontrib><creatorcontrib>Lauga, Eric</creatorcontrib><creatorcontrib>Poon, Wilson C K</creatorcontrib><creatorcontrib>DeSimone, Antonio</creatorcontrib><creatorcontrib>Muiños-Landin, Santiago</creatorcontrib><creatorcontrib>Fischer, Alexander</creatorcontrib><creatorcontrib>Söker, Nicola A</creatorcontrib><creatorcontrib>Cichos, Frank</creatorcontrib><creatorcontrib>Kapral, Raymond</creatorcontrib><creatorcontrib>Gaspard, Pierre</creatorcontrib><creatorcontrib>Ripoll, Marisol</creatorcontrib><creatorcontrib>Sagues, Francesc</creatorcontrib><creatorcontrib>Doostmohammadi, Amin</creatorcontrib><creatorcontrib>Yeomans, Julia M</creatorcontrib><creatorcontrib>Aranson, Igor S</creatorcontrib><creatorcontrib>Bechinger, Clemens</creatorcontrib><creatorcontrib>Stark, Holger</creatorcontrib><creatorcontrib>Hemelrijk, Charlotte K</creatorcontrib><creatorcontrib>Nedelec, François J</creatorcontrib><creatorcontrib>Sarkar, Trinish</creatorcontrib><creatorcontrib>Aryaksama, Thibault</creatorcontrib><creatorcontrib>Lacroix, Mathilde</creatorcontrib><creatorcontrib>Duclos, Guillaume</creatorcontrib><creatorcontrib>Yashunsky, Victor</creatorcontrib><creatorcontrib>Silberzan, Pascal</creatorcontrib><creatorcontrib>Arroyo, Marino</creatorcontrib><creatorcontrib>Kale, Sohan</creatorcontrib><title>The 2020 motile active matter roadmap</title><title>Journal of physics. Condensed matter</title><addtitle>J Phys Condens Matter</addtitle><description>Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area.</description><subject>Biological Physics</subject><subject>Physics</subject><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AURQdRbK3uXUk2gi5i32S-3ixLUSsU3FRwN0wmExpJTJ1JCv57G1K7enC59zw4hNxSeKKAOKdM0lRy_JzbXDKOZ2R6is7JFLRgKWrkE3IV4xcAcGT8kkxYBgK10lNyv9n6JIMMkqbtqton1nXV3ieN7TofktDaorG7a3JR2jr6m-OdkY-X581yla7fX9-Wi3XqOGKXWi4lgOMFk6z0CkuKWZHZEhyAKKxWVDEnNae5oyiYd6g4VdwXORToFLAZeRy5W1ubXagaG35NayuzWqzNkEEmpFAC9_TQfRi7u9D-9D52pqmi83Vtv33bR5MxIbRScHg0IzBWXWhjDL48sSmYQaQZrJnBmhlFHiZ3R3qfN744Df7NsT-scmq8</recordid><startdate>20200508</startdate><enddate>20200508</enddate><creator>Gompper, Gerhard</creator><creator>Winkler, Roland G</creator><creator>Speck, Thomas</creator><creator>Solon, Alexandre</creator><creator>Nardini, Cesare</creator><creator>Peruani, Fernando</creator><creator>Löwen, Hartmut</creator><creator>Golestanian, Ramin</creator><creator>Kaupp, U Benjamin</creator><creator>Alvarez, Luis</creator><creator>Kiørboe, Thomas</creator><creator>Lauga, Eric</creator><creator>Poon, Wilson C K</creator><creator>DeSimone, Antonio</creator><creator>Muiños-Landin, Santiago</creator><creator>Fischer, Alexander</creator><creator>Söker, Nicola A</creator><creator>Cichos, Frank</creator><creator>Kapral, Raymond</creator><creator>Gaspard, Pierre</creator><creator>Ripoll, Marisol</creator><creator>Sagues, Francesc</creator><creator>Doostmohammadi, Amin</creator><creator>Yeomans, Julia M</creator><creator>Aranson, Igor S</creator><creator>Bechinger, Clemens</creator><creator>Stark, Holger</creator><creator>Hemelrijk, Charlotte K</creator><creator>Nedelec, François J</creator><creator>Sarkar, Trinish</creator><creator>Aryaksama, Thibault</creator><creator>Lacroix, Mathilde</creator><creator>Duclos, Guillaume</creator><creator>Yashunsky, Victor</creator><creator>Silberzan, Pascal</creator><creator>Arroyo, Marino</creator><creator>Kale, Sohan</creator><general>IOP Publishing [1989-....]</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5376-8062</orcidid><orcidid>https://orcid.org/0000-0002-3149-4002</orcidid><orcidid>https://orcid.org/0000-0002-8141-5288</orcidid><orcidid>https://orcid.org/0000-0002-6388-5390</orcidid><orcidid>https://orcid.org/0000-0002-8904-0986</orcidid><orcidid>https://orcid.org/0000-0002-1116-4268</orcidid><orcidid>https://orcid.org/0000-0003-1647-940X</orcidid><orcidid>https://orcid.org/0000-0002-1027-2291</orcidid><orcidid>https://orcid.org/0000-0002-5496-5268</orcidid><orcidid>https://orcid.org/0000-0002-7513-0796</orcidid><orcidid>https://orcid.org/0000-0002-0696-6397</orcidid><orcidid>https://orcid.org/0000-0002-2956-5676</orcidid><orcidid>https://orcid.org/0000-0002-6357-1180</orcidid><orcidid>https://orcid.org/0000-0001-6160-077X</orcidid><orcidid>https://orcid.org/0000-0002-9803-4975</orcidid><orcidid>https://orcid.org/0000-0001-8268-5469</orcidid><orcidid>https://orcid.org/0000-0002-0222-1347</orcidid><orcidid>https://orcid.org/0000-0002-3265-336X</orcidid><orcidid>https://orcid.org/0000-0002-4652-645X</orcidid><orcidid>https://orcid.org/0000-0003-2985-8935</orcidid><orcidid>https://orcid.org/0000-0002-8554-882X</orcidid><orcidid>https://orcid.org/0000-0003-0760-7940</orcidid><orcidid>https://orcid.org/0000-0002-4062-5393</orcidid><orcidid>https://orcid.org/0000-0002-8916-2545</orcidid><orcidid>https://orcid.org/0000-0002-2632-3057</orcidid><orcidid>https://orcid.org/0000-0001-9583-067X</orcidid><orcidid>https://orcid.org/0000-0002-2753-6839</orcidid></search><sort><creationdate>20200508</creationdate><title>The 2020 motile active matter roadmap</title><author>Gompper, Gerhard ; Winkler, Roland G ; Speck, Thomas ; Solon, Alexandre ; Nardini, Cesare ; Peruani, Fernando ; Löwen, Hartmut ; Golestanian, Ramin ; Kaupp, U Benjamin ; Alvarez, Luis ; Kiørboe, Thomas ; Lauga, Eric ; Poon, Wilson C K ; DeSimone, Antonio ; Muiños-Landin, Santiago ; Fischer, Alexander ; Söker, Nicola A ; Cichos, Frank ; Kapral, Raymond ; Gaspard, Pierre ; Ripoll, Marisol ; Sagues, Francesc ; Doostmohammadi, Amin ; Yeomans, Julia M ; Aranson, Igor S ; Bechinger, Clemens ; Stark, Holger ; Hemelrijk, Charlotte K ; Nedelec, François J ; Sarkar, Trinish ; Aryaksama, Thibault ; Lacroix, Mathilde ; Duclos, Guillaume ; Yashunsky, Victor ; Silberzan, Pascal ; Arroyo, Marino ; Kale, Sohan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-a46600c4d363fe78f182d2af0c005da97173c6941bc1853ec874174edb0d8c703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biological Physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gompper, Gerhard</creatorcontrib><creatorcontrib>Winkler, Roland G</creatorcontrib><creatorcontrib>Speck, Thomas</creatorcontrib><creatorcontrib>Solon, Alexandre</creatorcontrib><creatorcontrib>Nardini, Cesare</creatorcontrib><creatorcontrib>Peruani, Fernando</creatorcontrib><creatorcontrib>Löwen, Hartmut</creatorcontrib><creatorcontrib>Golestanian, Ramin</creatorcontrib><creatorcontrib>Kaupp, U Benjamin</creatorcontrib><creatorcontrib>Alvarez, Luis</creatorcontrib><creatorcontrib>Kiørboe, Thomas</creatorcontrib><creatorcontrib>Lauga, Eric</creatorcontrib><creatorcontrib>Poon, Wilson C K</creatorcontrib><creatorcontrib>DeSimone, Antonio</creatorcontrib><creatorcontrib>Muiños-Landin, Santiago</creatorcontrib><creatorcontrib>Fischer, Alexander</creatorcontrib><creatorcontrib>Söker, Nicola A</creatorcontrib><creatorcontrib>Cichos, Frank</creatorcontrib><creatorcontrib>Kapral, Raymond</creatorcontrib><creatorcontrib>Gaspard, Pierre</creatorcontrib><creatorcontrib>Ripoll, Marisol</creatorcontrib><creatorcontrib>Sagues, Francesc</creatorcontrib><creatorcontrib>Doostmohammadi, Amin</creatorcontrib><creatorcontrib>Yeomans, Julia M</creatorcontrib><creatorcontrib>Aranson, Igor S</creatorcontrib><creatorcontrib>Bechinger, Clemens</creatorcontrib><creatorcontrib>Stark, Holger</creatorcontrib><creatorcontrib>Hemelrijk, Charlotte K</creatorcontrib><creatorcontrib>Nedelec, François J</creatorcontrib><creatorcontrib>Sarkar, Trinish</creatorcontrib><creatorcontrib>Aryaksama, Thibault</creatorcontrib><creatorcontrib>Lacroix, Mathilde</creatorcontrib><creatorcontrib>Duclos, Guillaume</creatorcontrib><creatorcontrib>Yashunsky, Victor</creatorcontrib><creatorcontrib>Silberzan, Pascal</creatorcontrib><creatorcontrib>Arroyo, Marino</creatorcontrib><creatorcontrib>Kale, Sohan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gompper, Gerhard</au><au>Winkler, Roland G</au><au>Speck, Thomas</au><au>Solon, Alexandre</au><au>Nardini, Cesare</au><au>Peruani, Fernando</au><au>Löwen, Hartmut</au><au>Golestanian, Ramin</au><au>Kaupp, U Benjamin</au><au>Alvarez, Luis</au><au>Kiørboe, Thomas</au><au>Lauga, Eric</au><au>Poon, Wilson C K</au><au>DeSimone, Antonio</au><au>Muiños-Landin, Santiago</au><au>Fischer, Alexander</au><au>Söker, Nicola A</au><au>Cichos, Frank</au><au>Kapral, Raymond</au><au>Gaspard, Pierre</au><au>Ripoll, Marisol</au><au>Sagues, Francesc</au><au>Doostmohammadi, Amin</au><au>Yeomans, Julia M</au><au>Aranson, Igor S</au><au>Bechinger, Clemens</au><au>Stark, Holger</au><au>Hemelrijk, Charlotte K</au><au>Nedelec, François J</au><au>Sarkar, Trinish</au><au>Aryaksama, Thibault</au><au>Lacroix, Mathilde</au><au>Duclos, Guillaume</au><au>Yashunsky, Victor</au><au>Silberzan, Pascal</au><au>Arroyo, Marino</au><au>Kale, Sohan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 2020 motile active matter roadmap</atitle><jtitle>Journal of physics. Condensed matter</jtitle><addtitle>J Phys Condens Matter</addtitle><date>2020-05-08</date><risdate>2020</risdate><volume>32</volume><issue>19</issue><spage>193001</spage><epage>193001</epage><pages>193001-193001</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><abstract>Activity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people. Inspired by biological microswimmers, various designs of autonomous synthetic nano- and micromachines have been proposed. Such machines provide the basis for multifunctional, highly responsive, intelligent (artificial) active materials, which exhibit emergent behavior and the ability to perform tasks in response to external stimuli. A major challenge for understanding and designing active matter is their inherent nonequilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Unraveling, predicting, and controlling the behavior of active matter is a truly interdisciplinary endeavor at the interface of biology, chemistry, ecology, engineering, mathematics, and physics. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter comprises a major challenge. Hence, to advance, and eventually reach a comprehensive understanding, this important research area requires a concerted, synergetic approach of the various disciplines. The 2020 motile active matter roadmap of Journal of Physics: Condensed Matter addresses the current state of the art of the field and provides guidance for both students as well as established scientists in their efforts to advance this fascinating area.</abstract><cop>England</cop><pub>IOP Publishing [1989-....]</pub><pmid>32058979</pmid><doi>10.1088/1361-648X/ab6348</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5376-8062</orcidid><orcidid>https://orcid.org/0000-0002-3149-4002</orcidid><orcidid>https://orcid.org/0000-0002-8141-5288</orcidid><orcidid>https://orcid.org/0000-0002-6388-5390</orcidid><orcidid>https://orcid.org/0000-0002-8904-0986</orcidid><orcidid>https://orcid.org/0000-0002-1116-4268</orcidid><orcidid>https://orcid.org/0000-0003-1647-940X</orcidid><orcidid>https://orcid.org/0000-0002-1027-2291</orcidid><orcidid>https://orcid.org/0000-0002-5496-5268</orcidid><orcidid>https://orcid.org/0000-0002-7513-0796</orcidid><orcidid>https://orcid.org/0000-0002-0696-6397</orcidid><orcidid>https://orcid.org/0000-0002-2956-5676</orcidid><orcidid>https://orcid.org/0000-0002-6357-1180</orcidid><orcidid>https://orcid.org/0000-0001-6160-077X</orcidid><orcidid>https://orcid.org/0000-0002-9803-4975</orcidid><orcidid>https://orcid.org/0000-0001-8268-5469</orcidid><orcidid>https://orcid.org/0000-0002-0222-1347</orcidid><orcidid>https://orcid.org/0000-0002-3265-336X</orcidid><orcidid>https://orcid.org/0000-0002-4652-645X</orcidid><orcidid>https://orcid.org/0000-0003-2985-8935</orcidid><orcidid>https://orcid.org/0000-0002-8554-882X</orcidid><orcidid>https://orcid.org/0000-0003-0760-7940</orcidid><orcidid>https://orcid.org/0000-0002-4062-5393</orcidid><orcidid>https://orcid.org/0000-0002-8916-2545</orcidid><orcidid>https://orcid.org/0000-0002-2632-3057</orcidid><orcidid>https://orcid.org/0000-0001-9583-067X</orcidid><orcidid>https://orcid.org/0000-0002-2753-6839</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8984 |
ispartof | Journal of physics. Condensed matter, 2020-05, Vol.32 (19), p.193001-193001 |
issn | 0953-8984 1361-648X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02565758v1 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Biological Physics Physics |
title | The 2020 motile active matter roadmap |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%202020%20motile%20active%20matter%20roadmap&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Gompper,%20Gerhard&rft.date=2020-05-08&rft.volume=32&rft.issue=19&rft.spage=193001&rft.epage=193001&rft.pages=193001-193001&rft.issn=0953-8984&rft.eissn=1361-648X&rft_id=info:doi/10.1088/1361-648X/ab6348&rft_dat=%3Cproquest_hal_p%3E2355977085%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2355977085&rft_id=info:pmid/32058979&rfr_iscdi=true |