Microfluidic channel with embedded monolayer nanofibers for cell culture and co-culture
Mimicking the cellular microenvironment is important for organoids and organ on-a-chip studies. One of the current issues is to introduce vessel-like structures into the culture system to improve the cellular and tissue functions, which deserves particular efforts in design and systematic considerat...
Gespeichert in:
Veröffentlicht in: | Microelectronic engineering 2020-03, Vol.225, p.111235, Article 111235 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111235 |
container_title | Microelectronic engineering |
container_volume | 225 |
creator | Huang, Boxin He, Yong Wang, Li Shi, Jian Hu, Jie Rofaani, Elrade Yamada, Ayako Chen, Yong |
description | Mimicking the cellular microenvironment is important for organoids and organ on-a-chip studies. One of the current issues is to introduce vessel-like structures into the culture system to improve the cellular and tissue functions, which deserves particular efforts in design and systematic consideration. Based on a standard device configuration, we fabricated a vessel-like component which can be easily integrated for cell co-culture. This component consists of an embedded monolayer of gelatin nanofibers on the top of an open channel. It can then be enclosed with an upper plastic plate with molded chamber, channels and standard Luer connectors. Human umbilical vein endothelial cells (HUVECs) were firstly introduced into the vessel-like channel and cultivated three-dimensionally with the help of a rotational device. Then, a flow was applied for cytoskeleton remolding, resulted in a dense and aligned HUVECs layer. Afterward, human glioblastoma cells (U87) were introduced in the upside of the fiber layer and a flow was also applied for the upper cell layer culture. Our results show adjunct formation of HUVEC and U87 cell layers on both sides of the monolayer of gelatin nanofibers, thereby providing a reliable support for a variety of co-culture assays.
[Display omitted]
•Fabrication of a microfluidic device with an embedded monolayer of gelatin nanofibers.•Formation of a vessel-like cell layer with the help of a rotation device.•Dynamic co-culture of human umbilical vein endothelial cells (HUVECs) and human glioblastoma cells (U87). |
doi_str_mv | 10.1016/j.mee.2020.111235 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02565348v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016793172030023X</els_id><sourcerecordid>2441575079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-478e6a3d212707fc4774082fad4b6088142bcfb66a4ca19f0bc5db3796f0fef83</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKc_wFvAk4fOJE2bFk9jqBMmXhSPIU2-sJS2mWk72b83o8Ojp_CG5_34vgehW0oWlND8oV60AAtGWMyUsjQ7QzNaiDTJsrw4R7PIiKRMqbhEV31fk5g5KWbo683p4G0zOuM01lvVddDgHzdsMbQVGAMGt77zjTpAwJ3qvHUVhB5bH7CGpsF6bIYxAFadwdonp3iNLqxqerg5vXP0-fz0sVonm_eX19Vyk2hO2JBwUUCuUsMoE0RYzYWIazGrDK9yUhSUs0rbKs8V14qWllQ6M1UqytwSC7ZI5-h-mrtVjdwF16pwkF45uV5u5PGPsCzPUl7sWWTvJnYX_PcI_SBrP4YuricZ5zQTGRFlpOhERS99H8D-jaVEHl3LWkbX8uhaTq5j53HqQDx17yDIXjvoNBgXQA_SePdP-xdk7YY_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441575079</pqid></control><display><type>article</type><title>Microfluidic channel with embedded monolayer nanofibers for cell culture and co-culture</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Huang, Boxin ; He, Yong ; Wang, Li ; Shi, Jian ; Hu, Jie ; Rofaani, Elrade ; Yamada, Ayako ; Chen, Yong</creator><creatorcontrib>Huang, Boxin ; He, Yong ; Wang, Li ; Shi, Jian ; Hu, Jie ; Rofaani, Elrade ; Yamada, Ayako ; Chen, Yong</creatorcontrib><description>Mimicking the cellular microenvironment is important for organoids and organ on-a-chip studies. One of the current issues is to introduce vessel-like structures into the culture system to improve the cellular and tissue functions, which deserves particular efforts in design and systematic consideration. Based on a standard device configuration, we fabricated a vessel-like component which can be easily integrated for cell co-culture. This component consists of an embedded monolayer of gelatin nanofibers on the top of an open channel. It can then be enclosed with an upper plastic plate with molded chamber, channels and standard Luer connectors. Human umbilical vein endothelial cells (HUVECs) were firstly introduced into the vessel-like channel and cultivated three-dimensionally with the help of a rotational device. Then, a flow was applied for cytoskeleton remolding, resulted in a dense and aligned HUVECs layer. Afterward, human glioblastoma cells (U87) were introduced in the upside of the fiber layer and a flow was also applied for the upper cell layer culture. Our results show adjunct formation of HUVEC and U87 cell layers on both sides of the monolayer of gelatin nanofibers, thereby providing a reliable support for a variety of co-culture assays.
[Display omitted]
•Fabrication of a microfluidic device with an embedded monolayer of gelatin nanofibers.•Formation of a vessel-like cell layer with the help of a rotation device.•Dynamic co-culture of human umbilical vein endothelial cells (HUVECs) and human glioblastoma cells (U87).</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2020.111235</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Basement membrane ; Blood vessel ; Blood vessels ; Cellular biology ; Cellular structure ; Chemical Sciences ; Connectors ; Cytoskeleton ; Endothelial cells ; Endothelium ; Fluid flow ; Gelatin ; Microfluidics ; Microstructure ; Monolayers ; Nanofibers ; Nanoscience ; Open channels ; Organ on-a-chip ; Plastic plates ; Semiconductors</subject><ispartof>Microelectronic engineering, 2020-03, Vol.225, p.111235, Article 111235</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 15, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-478e6a3d212707fc4774082fad4b6088142bcfb66a4ca19f0bc5db3796f0fef83</citedby><cites>FETCH-LOGICAL-c402t-478e6a3d212707fc4774082fad4b6088142bcfb66a4ca19f0bc5db3796f0fef83</cites><orcidid>0000-0002-2903-8753 ; 0000-0002-1969-7579 ; 0000-0003-3162-3318</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mee.2020.111235$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02565348$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Boxin</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Hu, Jie</creatorcontrib><creatorcontrib>Rofaani, Elrade</creatorcontrib><creatorcontrib>Yamada, Ayako</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><title>Microfluidic channel with embedded monolayer nanofibers for cell culture and co-culture</title><title>Microelectronic engineering</title><description>Mimicking the cellular microenvironment is important for organoids and organ on-a-chip studies. One of the current issues is to introduce vessel-like structures into the culture system to improve the cellular and tissue functions, which deserves particular efforts in design and systematic consideration. Based on a standard device configuration, we fabricated a vessel-like component which can be easily integrated for cell co-culture. This component consists of an embedded monolayer of gelatin nanofibers on the top of an open channel. It can then be enclosed with an upper plastic plate with molded chamber, channels and standard Luer connectors. Human umbilical vein endothelial cells (HUVECs) were firstly introduced into the vessel-like channel and cultivated three-dimensionally with the help of a rotational device. Then, a flow was applied for cytoskeleton remolding, resulted in a dense and aligned HUVECs layer. Afterward, human glioblastoma cells (U87) were introduced in the upside of the fiber layer and a flow was also applied for the upper cell layer culture. Our results show adjunct formation of HUVEC and U87 cell layers on both sides of the monolayer of gelatin nanofibers, thereby providing a reliable support for a variety of co-culture assays.
[Display omitted]
•Fabrication of a microfluidic device with an embedded monolayer of gelatin nanofibers.•Formation of a vessel-like cell layer with the help of a rotation device.•Dynamic co-culture of human umbilical vein endothelial cells (HUVECs) and human glioblastoma cells (U87).</description><subject>Basement membrane</subject><subject>Blood vessel</subject><subject>Blood vessels</subject><subject>Cellular biology</subject><subject>Cellular structure</subject><subject>Chemical Sciences</subject><subject>Connectors</subject><subject>Cytoskeleton</subject><subject>Endothelial cells</subject><subject>Endothelium</subject><subject>Fluid flow</subject><subject>Gelatin</subject><subject>Microfluidics</subject><subject>Microstructure</subject><subject>Monolayers</subject><subject>Nanofibers</subject><subject>Nanoscience</subject><subject>Open channels</subject><subject>Organ on-a-chip</subject><subject>Plastic plates</subject><subject>Semiconductors</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAYhoMoOKc_wFvAk4fOJE2bFk9jqBMmXhSPIU2-sJS2mWk72b83o8Ojp_CG5_34vgehW0oWlND8oV60AAtGWMyUsjQ7QzNaiDTJsrw4R7PIiKRMqbhEV31fk5g5KWbo683p4G0zOuM01lvVddDgHzdsMbQVGAMGt77zjTpAwJ3qvHUVhB5bH7CGpsF6bIYxAFadwdonp3iNLqxqerg5vXP0-fz0sVonm_eX19Vyk2hO2JBwUUCuUsMoE0RYzYWIazGrDK9yUhSUs0rbKs8V14qWllQ6M1UqytwSC7ZI5-h-mrtVjdwF16pwkF45uV5u5PGPsCzPUl7sWWTvJnYX_PcI_SBrP4YuricZ5zQTGRFlpOhERS99H8D-jaVEHl3LWkbX8uhaTq5j53HqQDx17yDIXjvoNBgXQA_SePdP-xdk7YY_</recordid><startdate>20200315</startdate><enddate>20200315</enddate><creator>Huang, Boxin</creator><creator>He, Yong</creator><creator>Wang, Li</creator><creator>Shi, Jian</creator><creator>Hu, Jie</creator><creator>Rofaani, Elrade</creator><creator>Yamada, Ayako</creator><creator>Chen, Yong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2903-8753</orcidid><orcidid>https://orcid.org/0000-0002-1969-7579</orcidid><orcidid>https://orcid.org/0000-0003-3162-3318</orcidid></search><sort><creationdate>20200315</creationdate><title>Microfluidic channel with embedded monolayer nanofibers for cell culture and co-culture</title><author>Huang, Boxin ; He, Yong ; Wang, Li ; Shi, Jian ; Hu, Jie ; Rofaani, Elrade ; Yamada, Ayako ; Chen, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-478e6a3d212707fc4774082fad4b6088142bcfb66a4ca19f0bc5db3796f0fef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Basement membrane</topic><topic>Blood vessel</topic><topic>Blood vessels</topic><topic>Cellular biology</topic><topic>Cellular structure</topic><topic>Chemical Sciences</topic><topic>Connectors</topic><topic>Cytoskeleton</topic><topic>Endothelial cells</topic><topic>Endothelium</topic><topic>Fluid flow</topic><topic>Gelatin</topic><topic>Microfluidics</topic><topic>Microstructure</topic><topic>Monolayers</topic><topic>Nanofibers</topic><topic>Nanoscience</topic><topic>Open channels</topic><topic>Organ on-a-chip</topic><topic>Plastic plates</topic><topic>Semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Boxin</creatorcontrib><creatorcontrib>He, Yong</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Shi, Jian</creatorcontrib><creatorcontrib>Hu, Jie</creatorcontrib><creatorcontrib>Rofaani, Elrade</creatorcontrib><creatorcontrib>Yamada, Ayako</creatorcontrib><creatorcontrib>Chen, Yong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Boxin</au><au>He, Yong</au><au>Wang, Li</au><au>Shi, Jian</au><au>Hu, Jie</au><au>Rofaani, Elrade</au><au>Yamada, Ayako</au><au>Chen, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic channel with embedded monolayer nanofibers for cell culture and co-culture</atitle><jtitle>Microelectronic engineering</jtitle><date>2020-03-15</date><risdate>2020</risdate><volume>225</volume><spage>111235</spage><pages>111235-</pages><artnum>111235</artnum><issn>0167-9317</issn><eissn>1873-5568</eissn><abstract>Mimicking the cellular microenvironment is important for organoids and organ on-a-chip studies. One of the current issues is to introduce vessel-like structures into the culture system to improve the cellular and tissue functions, which deserves particular efforts in design and systematic consideration. Based on a standard device configuration, we fabricated a vessel-like component which can be easily integrated for cell co-culture. This component consists of an embedded monolayer of gelatin nanofibers on the top of an open channel. It can then be enclosed with an upper plastic plate with molded chamber, channels and standard Luer connectors. Human umbilical vein endothelial cells (HUVECs) were firstly introduced into the vessel-like channel and cultivated three-dimensionally with the help of a rotational device. Then, a flow was applied for cytoskeleton remolding, resulted in a dense and aligned HUVECs layer. Afterward, human glioblastoma cells (U87) were introduced in the upside of the fiber layer and a flow was also applied for the upper cell layer culture. Our results show adjunct formation of HUVEC and U87 cell layers on both sides of the monolayer of gelatin nanofibers, thereby providing a reliable support for a variety of co-culture assays.
[Display omitted]
•Fabrication of a microfluidic device with an embedded monolayer of gelatin nanofibers.•Formation of a vessel-like cell layer with the help of a rotation device.•Dynamic co-culture of human umbilical vein endothelial cells (HUVECs) and human glioblastoma cells (U87).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2020.111235</doi><orcidid>https://orcid.org/0000-0002-2903-8753</orcidid><orcidid>https://orcid.org/0000-0002-1969-7579</orcidid><orcidid>https://orcid.org/0000-0003-3162-3318</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9317 |
ispartof | Microelectronic engineering, 2020-03, Vol.225, p.111235, Article 111235 |
issn | 0167-9317 1873-5568 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02565348v2 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Basement membrane Blood vessel Blood vessels Cellular biology Cellular structure Chemical Sciences Connectors Cytoskeleton Endothelial cells Endothelium Fluid flow Gelatin Microfluidics Microstructure Monolayers Nanofibers Nanoscience Open channels Organ on-a-chip Plastic plates Semiconductors |
title | Microfluidic channel with embedded monolayer nanofibers for cell culture and co-culture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20channel%20with%20embedded%20monolayer%20nanofibers%20for%20cell%20culture%20and%20co-culture&rft.jtitle=Microelectronic%20engineering&rft.au=Huang,%20Boxin&rft.date=2020-03-15&rft.volume=225&rft.spage=111235&rft.pages=111235-&rft.artnum=111235&rft.issn=0167-9317&rft.eissn=1873-5568&rft_id=info:doi/10.1016/j.mee.2020.111235&rft_dat=%3Cproquest_hal_p%3E2441575079%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441575079&rft_id=info:pmid/&rft_els_id=S016793172030023X&rfr_iscdi=true |