Thermal evolution of a metal drop falling in a less dense, more viscous fluid

The initial state of terrestrial planets was partly determined, during accretion, by the fall of metal drops in a liquid magma ocean. Here, we perform systematic numerical simulations in 2D cylindrical axisymmetric geometry of these falling dynamics and associated heat exchanges at the scale of one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review fluids 2020-05, Vol.5 (5), Article 053801
Hauptverfasser: Qaddah, B., Monteux, J., Le Bars, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physical review fluids
container_volume 5
creator Qaddah, B.
Monteux, J.
Le Bars, M.
description The initial state of terrestrial planets was partly determined, during accretion, by the fall of metal drops in a liquid magma ocean. Here, we perform systematic numerical simulations in 2D cylindrical axisymmetric geometry of these falling dynamics and associated heat exchanges at the scale of one single drop, for various initial sizes and ambient viscosities. We explore Reynolds number in the range [0.05 − 48], viscosity ratios in the range [50 − 4000], Weber number in the range [0.04 − 5] and Peclet number in the range [70 − 850]. We show that heat exchanges between the two phases occurs predominantly at the front section of the drop. Our systematic, parametric study exhibits shows that the thermal boundary layer thickness, the depth and time for equilibration, the Nusselt number, and the magma ocean volume affected by thermal echanges, all scale as power laws of the Peclet number. Because of drop distortions, these scaling laws deviate from the classical balances considering only heat diffusion through a laminar thermal boundary layer. Finally, when considering a temperature-dependent viscosity of the ambient fluid, we show that a low viscosity layer surrounds the drop, which influences the thermal evolution of non-deformable, low Reynolds number drops only, and decreases the breakup distance for some limited breakup modes.
doi_str_mv 10.1103/PhysRevFluids.5.053801
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02563299v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02563299v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-82b5bf6fa96722c160cb2efa63a0588af76fdced826824dc9d00c963a5809b963</originalsourceid><addsrcrecordid>eNpVkEFLAzEQhYMoWLR_QXIV3DpJutnkWIq1QkWRCt5CNpvYSHZTknah_94tFdHTPL55MzweQjcEJoQAu3_dHPKb7Rdh75s8KSdQMgHkDI3olMtCSvg4_6Mv0TjnLwAgnFWVFCP0vN7Y1OqAbR_Dfudjh6PDGrd2N8AmxS12OgTffWLfDTzYnHFju2zvcBuTxb3PJu4zdscE1-hicGc7_plX6H3xsJ4vi9XL49N8tioMY9WuELQua8edlryi1BAOpqbWac40lEJoV3HXGNsIygWdNkY2AEYO21KArAdxhW5Pfzc6qG3yrU4HFbVXy9lKHRnQkjMqZU8GLz95TYo5J-t-DwioY4fqX4eqVKcO2TeSLWif</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal evolution of a metal drop falling in a less dense, more viscous fluid</title><source>American Physical Society Journals</source><creator>Qaddah, B. ; Monteux, J. ; Le Bars, M.</creator><creatorcontrib>Qaddah, B. ; Monteux, J. ; Le Bars, M.</creatorcontrib><description>The initial state of terrestrial planets was partly determined, during accretion, by the fall of metal drops in a liquid magma ocean. Here, we perform systematic numerical simulations in 2D cylindrical axisymmetric geometry of these falling dynamics and associated heat exchanges at the scale of one single drop, for various initial sizes and ambient viscosities. We explore Reynolds number in the range [0.05 − 48], viscosity ratios in the range [50 − 4000], Weber number in the range [0.04 − 5] and Peclet number in the range [70 − 850]. We show that heat exchanges between the two phases occurs predominantly at the front section of the drop. Our systematic, parametric study exhibits shows that the thermal boundary layer thickness, the depth and time for equilibration, the Nusselt number, and the magma ocean volume affected by thermal echanges, all scale as power laws of the Peclet number. Because of drop distortions, these scaling laws deviate from the classical balances considering only heat diffusion through a laminar thermal boundary layer. Finally, when considering a temperature-dependent viscosity of the ambient fluid, we show that a low viscosity layer surrounds the drop, which influences the thermal evolution of non-deformable, low Reynolds number drops only, and decreases the breakup distance for some limited breakup modes.</description><identifier>ISSN: 2469-990X</identifier><identifier>EISSN: 2469-990X</identifier><identifier>DOI: 10.1103/PhysRevFluids.5.053801</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Earth Sciences ; Fluid Dynamics ; Fluid mechanics ; Geophysics ; Mechanics ; Physics ; Sciences of the Universe</subject><ispartof>Physical review fluids, 2020-05, Vol.5 (5), Article 053801</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-82b5bf6fa96722c160cb2efa63a0588af76fdced826824dc9d00c963a5809b963</citedby><cites>FETCH-LOGICAL-c337t-82b5bf6fa96722c160cb2efa63a0588af76fdced826824dc9d00c963a5809b963</cites><orcidid>0000-0001-8099-5949 ; 0000-0002-4884-6190 ; 0000-0002-1059-6165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02563299$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Qaddah, B.</creatorcontrib><creatorcontrib>Monteux, J.</creatorcontrib><creatorcontrib>Le Bars, M.</creatorcontrib><title>Thermal evolution of a metal drop falling in a less dense, more viscous fluid</title><title>Physical review fluids</title><description>The initial state of terrestrial planets was partly determined, during accretion, by the fall of metal drops in a liquid magma ocean. Here, we perform systematic numerical simulations in 2D cylindrical axisymmetric geometry of these falling dynamics and associated heat exchanges at the scale of one single drop, for various initial sizes and ambient viscosities. We explore Reynolds number in the range [0.05 − 48], viscosity ratios in the range [50 − 4000], Weber number in the range [0.04 − 5] and Peclet number in the range [70 − 850]. We show that heat exchanges between the two phases occurs predominantly at the front section of the drop. Our systematic, parametric study exhibits shows that the thermal boundary layer thickness, the depth and time for equilibration, the Nusselt number, and the magma ocean volume affected by thermal echanges, all scale as power laws of the Peclet number. Because of drop distortions, these scaling laws deviate from the classical balances considering only heat diffusion through a laminar thermal boundary layer. Finally, when considering a temperature-dependent viscosity of the ambient fluid, we show that a low viscosity layer surrounds the drop, which influences the thermal evolution of non-deformable, low Reynolds number drops only, and decreases the breakup distance for some limited breakup modes.</description><subject>Earth Sciences</subject><subject>Fluid Dynamics</subject><subject>Fluid mechanics</subject><subject>Geophysics</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><issn>2469-990X</issn><issn>2469-990X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkEFLAzEQhYMoWLR_QXIV3DpJutnkWIq1QkWRCt5CNpvYSHZTknah_94tFdHTPL55MzweQjcEJoQAu3_dHPKb7Rdh75s8KSdQMgHkDI3olMtCSvg4_6Mv0TjnLwAgnFWVFCP0vN7Y1OqAbR_Dfudjh6PDGrd2N8AmxS12OgTffWLfDTzYnHFju2zvcBuTxb3PJu4zdscE1-hicGc7_plX6H3xsJ4vi9XL49N8tioMY9WuELQua8edlryi1BAOpqbWac40lEJoV3HXGNsIygWdNkY2AEYO21KArAdxhW5Pfzc6qG3yrU4HFbVXy9lKHRnQkjMqZU8GLz95TYo5J-t-DwioY4fqX4eqVKcO2TeSLWif</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Qaddah, B.</creator><creator>Monteux, J.</creator><creator>Le Bars, M.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8099-5949</orcidid><orcidid>https://orcid.org/0000-0002-4884-6190</orcidid><orcidid>https://orcid.org/0000-0002-1059-6165</orcidid></search><sort><creationdate>20200501</creationdate><title>Thermal evolution of a metal drop falling in a less dense, more viscous fluid</title><author>Qaddah, B. ; Monteux, J. ; Le Bars, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-82b5bf6fa96722c160cb2efa63a0588af76fdced826824dc9d00c963a5809b963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Earth Sciences</topic><topic>Fluid Dynamics</topic><topic>Fluid mechanics</topic><topic>Geophysics</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qaddah, B.</creatorcontrib><creatorcontrib>Monteux, J.</creatorcontrib><creatorcontrib>Le Bars, M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qaddah, B.</au><au>Monteux, J.</au><au>Le Bars, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal evolution of a metal drop falling in a less dense, more viscous fluid</atitle><jtitle>Physical review fluids</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>5</volume><issue>5</issue><artnum>053801</artnum><issn>2469-990X</issn><eissn>2469-990X</eissn><abstract>The initial state of terrestrial planets was partly determined, during accretion, by the fall of metal drops in a liquid magma ocean. Here, we perform systematic numerical simulations in 2D cylindrical axisymmetric geometry of these falling dynamics and associated heat exchanges at the scale of one single drop, for various initial sizes and ambient viscosities. We explore Reynolds number in the range [0.05 − 48], viscosity ratios in the range [50 − 4000], Weber number in the range [0.04 − 5] and Peclet number in the range [70 − 850]. We show that heat exchanges between the two phases occurs predominantly at the front section of the drop. Our systematic, parametric study exhibits shows that the thermal boundary layer thickness, the depth and time for equilibration, the Nusselt number, and the magma ocean volume affected by thermal echanges, all scale as power laws of the Peclet number. Because of drop distortions, these scaling laws deviate from the classical balances considering only heat diffusion through a laminar thermal boundary layer. Finally, when considering a temperature-dependent viscosity of the ambient fluid, we show that a low viscosity layer surrounds the drop, which influences the thermal evolution of non-deformable, low Reynolds number drops only, and decreases the breakup distance for some limited breakup modes.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevFluids.5.053801</doi><orcidid>https://orcid.org/0000-0001-8099-5949</orcidid><orcidid>https://orcid.org/0000-0002-4884-6190</orcidid><orcidid>https://orcid.org/0000-0002-1059-6165</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-990X
ispartof Physical review fluids, 2020-05, Vol.5 (5), Article 053801
issn 2469-990X
2469-990X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02563299v1
source American Physical Society Journals
subjects Earth Sciences
Fluid Dynamics
Fluid mechanics
Geophysics
Mechanics
Physics
Sciences of the Universe
title Thermal evolution of a metal drop falling in a less dense, more viscous fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20evolution%20of%20a%20metal%20drop%20falling%20in%20a%20less%20dense,%20more%20viscous%20fluid&rft.jtitle=Physical%20review%20fluids&rft.au=Qaddah,%20B.&rft.date=2020-05-01&rft.volume=5&rft.issue=5&rft.artnum=053801&rft.issn=2469-990X&rft.eissn=2469-990X&rft_id=info:doi/10.1103/PhysRevFluids.5.053801&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02563299v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true