Thermal evolution of a metal drop falling in a less dense, more viscous fluid
The initial state of terrestrial planets was partly determined, during accretion, by the fall of metal drops in a liquid magma ocean. Here, we perform systematic numerical simulations in 2D cylindrical axisymmetric geometry of these falling dynamics and associated heat exchanges at the scale of one...
Gespeichert in:
Veröffentlicht in: | Physical review fluids 2020-05, Vol.5 (5), Article 053801 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Physical review fluids |
container_volume | 5 |
creator | Qaddah, B. Monteux, J. Le Bars, M. |
description | The initial state of terrestrial planets was partly determined, during accretion, by the fall of metal drops in a liquid magma ocean. Here, we perform systematic numerical simulations in 2D cylindrical axisymmetric geometry of these falling dynamics and associated heat exchanges at the scale of one single drop, for various initial sizes and ambient viscosities. We explore Reynolds number in the range [0.05 − 48], viscosity ratios in the range [50 − 4000], Weber number in the range [0.04 − 5] and Peclet number in the range [70 − 850]. We show that heat exchanges between the two phases occurs predominantly at the front section of the drop. Our systematic, parametric study exhibits shows that the thermal boundary layer thickness, the depth and time for equilibration, the Nusselt number, and the magma ocean volume affected by thermal echanges, all scale as power laws of the Peclet number. Because of drop distortions, these scaling laws deviate from the classical balances considering only heat diffusion through a laminar thermal boundary layer. Finally, when considering a temperature-dependent viscosity of the ambient fluid, we show that a low viscosity layer surrounds the drop, which influences the thermal evolution of non-deformable, low Reynolds number drops only, and decreases the breakup distance for some limited breakup modes. |
doi_str_mv | 10.1103/PhysRevFluids.5.053801 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02563299v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02563299v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-82b5bf6fa96722c160cb2efa63a0588af76fdced826824dc9d00c963a5809b963</originalsourceid><addsrcrecordid>eNpVkEFLAzEQhYMoWLR_QXIV3DpJutnkWIq1QkWRCt5CNpvYSHZTknah_94tFdHTPL55MzweQjcEJoQAu3_dHPKb7Rdh75s8KSdQMgHkDI3olMtCSvg4_6Mv0TjnLwAgnFWVFCP0vN7Y1OqAbR_Dfudjh6PDGrd2N8AmxS12OgTffWLfDTzYnHFju2zvcBuTxb3PJu4zdscE1-hicGc7_plX6H3xsJ4vi9XL49N8tioMY9WuELQua8edlryi1BAOpqbWac40lEJoV3HXGNsIygWdNkY2AEYO21KArAdxhW5Pfzc6qG3yrU4HFbVXy9lKHRnQkjMqZU8GLz95TYo5J-t-DwioY4fqX4eqVKcO2TeSLWif</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal evolution of a metal drop falling in a less dense, more viscous fluid</title><source>American Physical Society Journals</source><creator>Qaddah, B. ; Monteux, J. ; Le Bars, M.</creator><creatorcontrib>Qaddah, B. ; Monteux, J. ; Le Bars, M.</creatorcontrib><description>The initial state of terrestrial planets was partly determined, during accretion, by the fall of metal drops in a liquid magma ocean. Here, we perform systematic numerical simulations in 2D cylindrical axisymmetric geometry of these falling dynamics and associated heat exchanges at the scale of one single drop, for various initial sizes and ambient viscosities. We explore Reynolds number in the range [0.05 − 48], viscosity ratios in the range [50 − 4000], Weber number in the range [0.04 − 5] and Peclet number in the range [70 − 850]. We show that heat exchanges between the two phases occurs predominantly at the front section of the drop. Our systematic, parametric study exhibits shows that the thermal boundary layer thickness, the depth and time for equilibration, the Nusselt number, and the magma ocean volume affected by thermal echanges, all scale as power laws of the Peclet number. Because of drop distortions, these scaling laws deviate from the classical balances considering only heat diffusion through a laminar thermal boundary layer. Finally, when considering a temperature-dependent viscosity of the ambient fluid, we show that a low viscosity layer surrounds the drop, which influences the thermal evolution of non-deformable, low Reynolds number drops only, and decreases the breakup distance for some limited breakup modes.</description><identifier>ISSN: 2469-990X</identifier><identifier>EISSN: 2469-990X</identifier><identifier>DOI: 10.1103/PhysRevFluids.5.053801</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Earth Sciences ; Fluid Dynamics ; Fluid mechanics ; Geophysics ; Mechanics ; Physics ; Sciences of the Universe</subject><ispartof>Physical review fluids, 2020-05, Vol.5 (5), Article 053801</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-82b5bf6fa96722c160cb2efa63a0588af76fdced826824dc9d00c963a5809b963</citedby><cites>FETCH-LOGICAL-c337t-82b5bf6fa96722c160cb2efa63a0588af76fdced826824dc9d00c963a5809b963</cites><orcidid>0000-0001-8099-5949 ; 0000-0002-4884-6190 ; 0000-0002-1059-6165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02563299$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Qaddah, B.</creatorcontrib><creatorcontrib>Monteux, J.</creatorcontrib><creatorcontrib>Le Bars, M.</creatorcontrib><title>Thermal evolution of a metal drop falling in a less dense, more viscous fluid</title><title>Physical review fluids</title><description>The initial state of terrestrial planets was partly determined, during accretion, by the fall of metal drops in a liquid magma ocean. Here, we perform systematic numerical simulations in 2D cylindrical axisymmetric geometry of these falling dynamics and associated heat exchanges at the scale of one single drop, for various initial sizes and ambient viscosities. We explore Reynolds number in the range [0.05 − 48], viscosity ratios in the range [50 − 4000], Weber number in the range [0.04 − 5] and Peclet number in the range [70 − 850]. We show that heat exchanges between the two phases occurs predominantly at the front section of the drop. Our systematic, parametric study exhibits shows that the thermal boundary layer thickness, the depth and time for equilibration, the Nusselt number, and the magma ocean volume affected by thermal echanges, all scale as power laws of the Peclet number. Because of drop distortions, these scaling laws deviate from the classical balances considering only heat diffusion through a laminar thermal boundary layer. Finally, when considering a temperature-dependent viscosity of the ambient fluid, we show that a low viscosity layer surrounds the drop, which influences the thermal evolution of non-deformable, low Reynolds number drops only, and decreases the breakup distance for some limited breakup modes.</description><subject>Earth Sciences</subject><subject>Fluid Dynamics</subject><subject>Fluid mechanics</subject><subject>Geophysics</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><issn>2469-990X</issn><issn>2469-990X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkEFLAzEQhYMoWLR_QXIV3DpJutnkWIq1QkWRCt5CNpvYSHZTknah_94tFdHTPL55MzweQjcEJoQAu3_dHPKb7Rdh75s8KSdQMgHkDI3olMtCSvg4_6Mv0TjnLwAgnFWVFCP0vN7Y1OqAbR_Dfudjh6PDGrd2N8AmxS12OgTffWLfDTzYnHFju2zvcBuTxb3PJu4zdscE1-hicGc7_plX6H3xsJ4vi9XL49N8tioMY9WuELQua8edlryi1BAOpqbWac40lEJoV3HXGNsIygWdNkY2AEYO21KArAdxhW5Pfzc6qG3yrU4HFbVXy9lKHRnQkjMqZU8GLz95TYo5J-t-DwioY4fqX4eqVKcO2TeSLWif</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Qaddah, B.</creator><creator>Monteux, J.</creator><creator>Le Bars, M.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-8099-5949</orcidid><orcidid>https://orcid.org/0000-0002-4884-6190</orcidid><orcidid>https://orcid.org/0000-0002-1059-6165</orcidid></search><sort><creationdate>20200501</creationdate><title>Thermal evolution of a metal drop falling in a less dense, more viscous fluid</title><author>Qaddah, B. ; Monteux, J. ; Le Bars, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-82b5bf6fa96722c160cb2efa63a0588af76fdced826824dc9d00c963a5809b963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Earth Sciences</topic><topic>Fluid Dynamics</topic><topic>Fluid mechanics</topic><topic>Geophysics</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qaddah, B.</creatorcontrib><creatorcontrib>Monteux, J.</creatorcontrib><creatorcontrib>Le Bars, M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qaddah, B.</au><au>Monteux, J.</au><au>Le Bars, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal evolution of a metal drop falling in a less dense, more viscous fluid</atitle><jtitle>Physical review fluids</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>5</volume><issue>5</issue><artnum>053801</artnum><issn>2469-990X</issn><eissn>2469-990X</eissn><abstract>The initial state of terrestrial planets was partly determined, during accretion, by the fall of metal drops in a liquid magma ocean. Here, we perform systematic numerical simulations in 2D cylindrical axisymmetric geometry of these falling dynamics and associated heat exchanges at the scale of one single drop, for various initial sizes and ambient viscosities. We explore Reynolds number in the range [0.05 − 48], viscosity ratios in the range [50 − 4000], Weber number in the range [0.04 − 5] and Peclet number in the range [70 − 850]. We show that heat exchanges between the two phases occurs predominantly at the front section of the drop. Our systematic, parametric study exhibits shows that the thermal boundary layer thickness, the depth and time for equilibration, the Nusselt number, and the magma ocean volume affected by thermal echanges, all scale as power laws of the Peclet number. Because of drop distortions, these scaling laws deviate from the classical balances considering only heat diffusion through a laminar thermal boundary layer. Finally, when considering a temperature-dependent viscosity of the ambient fluid, we show that a low viscosity layer surrounds the drop, which influences the thermal evolution of non-deformable, low Reynolds number drops only, and decreases the breakup distance for some limited breakup modes.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevFluids.5.053801</doi><orcidid>https://orcid.org/0000-0001-8099-5949</orcidid><orcidid>https://orcid.org/0000-0002-4884-6190</orcidid><orcidid>https://orcid.org/0000-0002-1059-6165</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-990X |
ispartof | Physical review fluids, 2020-05, Vol.5 (5), Article 053801 |
issn | 2469-990X 2469-990X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02563299v1 |
source | American Physical Society Journals |
subjects | Earth Sciences Fluid Dynamics Fluid mechanics Geophysics Mechanics Physics Sciences of the Universe |
title | Thermal evolution of a metal drop falling in a less dense, more viscous fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20evolution%20of%20a%20metal%20drop%20falling%20in%20a%20less%20dense,%20more%20viscous%20fluid&rft.jtitle=Physical%20review%20fluids&rft.au=Qaddah,%20B.&rft.date=2020-05-01&rft.volume=5&rft.issue=5&rft.artnum=053801&rft.issn=2469-990X&rft.eissn=2469-990X&rft_id=info:doi/10.1103/PhysRevFluids.5.053801&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02563299v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |