On the self-regulation of intense star-formation in galaxies at z = 1−3

We have analyzed the properties of the Hα and [Nii]λ6583 rest-frame optical emission lines of a sample of 53 intensely star forming galaxies at z = 1.3 to 2.7 observed with SINFONI on the ESO-VLT. Similar to previous authors, we find large velocity dispersions in the lines, σ = few 10−250 km s-1. Ou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2013-07, Vol.555, p.np-np
Hauptverfasser: Lehnert, M. D., Le Tiran, L., Nesvadba, N. P. H., van Driel, W., Boulanger, F., Di Matteo, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page np
container_issue
container_start_page np
container_title Astronomy and astrophysics (Berlin)
container_volume 555
creator Lehnert, M. D.
Le Tiran, L.
Nesvadba, N. P. H.
van Driel, W.
Boulanger, F.
Di Matteo, P.
description We have analyzed the properties of the Hα and [Nii]λ6583 rest-frame optical emission lines of a sample of 53 intensely star forming galaxies at z = 1.3 to 2.7 observed with SINFONI on the ESO-VLT. Similar to previous authors, we find large velocity dispersions in the lines, σ = few 10−250 km s-1. Our data agree well with simulations where we applied beam-smearing and assumed a scaling relation of the form: velocity dispersion is proportional to the square root of the star-formation intensity (star-formation rate per unit surface area). We conclude that the dispersions are primarily driven by star formation. To explain the high surface brightness and optical line ratios, high thermal pressures in the warm ionized medium, WIM, are required (P/k ~  > 106−107 K cm-3). Such thermal pressures in the WIM are similar to those observed in nearby starburst galaxies, but occur over much larger physical scales. Moreover, the relatively low ionization parameters necessary to fit the high surface brightnesses and optical line ratios suggest that the gas is not only directly associated with regions of star formation, but is wide spread throughout the general interstellar medium (ISM). Thus the optical emission line gas is a tracer of the large scale dynamics of the bulk of the ISM. We present a simple model for the energy input from young stars in an accreting galaxy, to argue that the intense star-formation is supporting high turbulent pressure, which roughly balances the gravitational pressure and thus enables distant gas accreting disks to maintain a Toomre disk instability parameter Q ~ 1. For a star formation efficiency of 3%, only 5−15% of the mechanical energy from young stars that is deposited in the ISM is needed to support the level of turbulence required for maintaining this balance. Since this balance is maintained by energy injected into the ISM by the young stars themselves, this suggests that star formation in high redshift galaxies is self-regulating.
doi_str_mv 10.1051/0004-6361/201220555
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02561953v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1677959637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-ed9ace4b71f81a4bac18613489537cef85ff6b97552c7963f9851446238aafc93</originalsourceid><addsrcrecordid>eNqFkb9OwzAQxi0EEqXwBCweYQj1xX8zMKAIaKtKXYo6Wm6w20CaFDtFhSdg5hF5EhIFZWU63d3vuzt9h9AlkBsgHEaEEBYJKmAUE4hjwjk_QgNgNI6IZOIYDXriFJ2F8NKkMSg6QJN5ieuNxcEWLvJ2vS9MnVclrhzOy9qWoWnVxkeu8tuuk5d4bQpzyG3Apsaf-BbDz9c3PUcnzhTBXvzFIXp6uF-k42g2f5ykd7Moo0rWkX1OTGbZSoJTYNjKZKAEUKYSTmVmneLOiVUiOY8zmQjqEsWBMRFTZYzLEjpE193cjSn0zudb4z90ZXI9vpvptkZiLqCZ9g4Ne9WxO1-97W2o9TYPmS0KU9pqHzQIKRPebJH_o1w01iZM0QalHZr5KgRvXX8GEN3-Q7du69Zt3f-jUUWdKg-1PfQS41-1kFRyrchSp-lyMZ2C0GP6C9v1ifQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560129483</pqid></control><display><type>article</type><title>On the self-regulation of intense star-formation in galaxies at z = 1−3</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lehnert, M. D. ; Le Tiran, L. ; Nesvadba, N. P. H. ; van Driel, W. ; Boulanger, F. ; Di Matteo, P.</creator><creatorcontrib>Lehnert, M. D. ; Le Tiran, L. ; Nesvadba, N. P. H. ; van Driel, W. ; Boulanger, F. ; Di Matteo, P.</creatorcontrib><description>We have analyzed the properties of the Hα and [Nii]λ6583 rest-frame optical emission lines of a sample of 53 intensely star forming galaxies at z = 1.3 to 2.7 observed with SINFONI on the ESO-VLT. Similar to previous authors, we find large velocity dispersions in the lines, σ = few 10−250 km s-1. Our data agree well with simulations where we applied beam-smearing and assumed a scaling relation of the form: velocity dispersion is proportional to the square root of the star-formation intensity (star-formation rate per unit surface area). We conclude that the dispersions are primarily driven by star formation. To explain the high surface brightness and optical line ratios, high thermal pressures in the warm ionized medium, WIM, are required (P/k ~  &gt; 106−107 K cm-3). Such thermal pressures in the WIM are similar to those observed in nearby starburst galaxies, but occur over much larger physical scales. Moreover, the relatively low ionization parameters necessary to fit the high surface brightnesses and optical line ratios suggest that the gas is not only directly associated with regions of star formation, but is wide spread throughout the general interstellar medium (ISM). Thus the optical emission line gas is a tracer of the large scale dynamics of the bulk of the ISM. We present a simple model for the energy input from young stars in an accreting galaxy, to argue that the intense star-formation is supporting high turbulent pressure, which roughly balances the gravitational pressure and thus enables distant gas accreting disks to maintain a Toomre disk instability parameter Q ~ 1. For a star formation efficiency of 3%, only 5−15% of the mechanical energy from young stars that is deposited in the ISM is needed to support the level of turbulence required for maintaining this balance. Since this balance is maintained by energy injected into the ISM by the young stars themselves, this suggests that star formation in high redshift galaxies is self-regulating.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201220555</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Astronomy ; Astrophysics ; Balancing ; Dispersions ; Galaxies ; galaxies: evolution ; galaxies: formation ; galaxies: high-redshift ; galaxies: ISM ; galaxies: kinematics and dynamics ; galaxies: star formation ; Interstellar matter ; Optical properties ; Physics ; Star formation ; Stars</subject><ispartof>Astronomy and astrophysics (Berlin), 2013-07, Vol.555, p.np-np</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-ed9ace4b71f81a4bac18613489537cef85ff6b97552c7963f9851446238aafc93</citedby><cites>FETCH-LOGICAL-c387t-ed9ace4b71f81a4bac18613489537cef85ff6b97552c7963f9851446238aafc93</cites><orcidid>0000-0001-5783-6544</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3727,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02561953$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehnert, M. D.</creatorcontrib><creatorcontrib>Le Tiran, L.</creatorcontrib><creatorcontrib>Nesvadba, N. P. H.</creatorcontrib><creatorcontrib>van Driel, W.</creatorcontrib><creatorcontrib>Boulanger, F.</creatorcontrib><creatorcontrib>Di Matteo, P.</creatorcontrib><title>On the self-regulation of intense star-formation in galaxies at z = 1−3</title><title>Astronomy and astrophysics (Berlin)</title><description>We have analyzed the properties of the Hα and [Nii]λ6583 rest-frame optical emission lines of a sample of 53 intensely star forming galaxies at z = 1.3 to 2.7 observed with SINFONI on the ESO-VLT. Similar to previous authors, we find large velocity dispersions in the lines, σ = few 10−250 km s-1. Our data agree well with simulations where we applied beam-smearing and assumed a scaling relation of the form: velocity dispersion is proportional to the square root of the star-formation intensity (star-formation rate per unit surface area). We conclude that the dispersions are primarily driven by star formation. To explain the high surface brightness and optical line ratios, high thermal pressures in the warm ionized medium, WIM, are required (P/k ~  &gt; 106−107 K cm-3). Such thermal pressures in the WIM are similar to those observed in nearby starburst galaxies, but occur over much larger physical scales. Moreover, the relatively low ionization parameters necessary to fit the high surface brightnesses and optical line ratios suggest that the gas is not only directly associated with regions of star formation, but is wide spread throughout the general interstellar medium (ISM). Thus the optical emission line gas is a tracer of the large scale dynamics of the bulk of the ISM. We present a simple model for the energy input from young stars in an accreting galaxy, to argue that the intense star-formation is supporting high turbulent pressure, which roughly balances the gravitational pressure and thus enables distant gas accreting disks to maintain a Toomre disk instability parameter Q ~ 1. For a star formation efficiency of 3%, only 5−15% of the mechanical energy from young stars that is deposited in the ISM is needed to support the level of turbulence required for maintaining this balance. Since this balance is maintained by energy injected into the ISM by the young stars themselves, this suggests that star formation in high redshift galaxies is self-regulating.</description><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Balancing</subject><subject>Dispersions</subject><subject>Galaxies</subject><subject>galaxies: evolution</subject><subject>galaxies: formation</subject><subject>galaxies: high-redshift</subject><subject>galaxies: ISM</subject><subject>galaxies: kinematics and dynamics</subject><subject>galaxies: star formation</subject><subject>Interstellar matter</subject><subject>Optical properties</subject><subject>Physics</subject><subject>Star formation</subject><subject>Stars</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkb9OwzAQxi0EEqXwBCweYQj1xX8zMKAIaKtKXYo6Wm6w20CaFDtFhSdg5hF5EhIFZWU63d3vuzt9h9AlkBsgHEaEEBYJKmAUE4hjwjk_QgNgNI6IZOIYDXriFJ2F8NKkMSg6QJN5ieuNxcEWLvJ2vS9MnVclrhzOy9qWoWnVxkeu8tuuk5d4bQpzyG3Apsaf-BbDz9c3PUcnzhTBXvzFIXp6uF-k42g2f5ykd7Moo0rWkX1OTGbZSoJTYNjKZKAEUKYSTmVmneLOiVUiOY8zmQjqEsWBMRFTZYzLEjpE193cjSn0zudb4z90ZXI9vpvptkZiLqCZ9g4Ne9WxO1-97W2o9TYPmS0KU9pqHzQIKRPebJH_o1w01iZM0QalHZr5KgRvXX8GEN3-Q7du69Zt3f-jUUWdKg-1PfQS41-1kFRyrchSp-lyMZ2C0GP6C9v1ifQ</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Lehnert, M. D.</creator><creator>Le Tiran, L.</creator><creator>Nesvadba, N. P. H.</creator><creator>van Driel, W.</creator><creator>Boulanger, F.</creator><creator>Di Matteo, P.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5783-6544</orcidid></search><sort><creationdate>20130701</creationdate><title>On the self-regulation of intense star-formation in galaxies at z = 1−3</title><author>Lehnert, M. D. ; Le Tiran, L. ; Nesvadba, N. P. H. ; van Driel, W. ; Boulanger, F. ; Di Matteo, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-ed9ace4b71f81a4bac18613489537cef85ff6b97552c7963f9851446238aafc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Balancing</topic><topic>Dispersions</topic><topic>Galaxies</topic><topic>galaxies: evolution</topic><topic>galaxies: formation</topic><topic>galaxies: high-redshift</topic><topic>galaxies: ISM</topic><topic>galaxies: kinematics and dynamics</topic><topic>galaxies: star formation</topic><topic>Interstellar matter</topic><topic>Optical properties</topic><topic>Physics</topic><topic>Star formation</topic><topic>Stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehnert, M. D.</creatorcontrib><creatorcontrib>Le Tiran, L.</creatorcontrib><creatorcontrib>Nesvadba, N. P. H.</creatorcontrib><creatorcontrib>van Driel, W.</creatorcontrib><creatorcontrib>Boulanger, F.</creatorcontrib><creatorcontrib>Di Matteo, P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehnert, M. D.</au><au>Le Tiran, L.</au><au>Nesvadba, N. P. H.</au><au>van Driel, W.</au><au>Boulanger, F.</au><au>Di Matteo, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the self-regulation of intense star-formation in galaxies at z = 1−3</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>555</volume><spage>np</spage><epage>np</epage><pages>np-np</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>We have analyzed the properties of the Hα and [Nii]λ6583 rest-frame optical emission lines of a sample of 53 intensely star forming galaxies at z = 1.3 to 2.7 observed with SINFONI on the ESO-VLT. Similar to previous authors, we find large velocity dispersions in the lines, σ = few 10−250 km s-1. Our data agree well with simulations where we applied beam-smearing and assumed a scaling relation of the form: velocity dispersion is proportional to the square root of the star-formation intensity (star-formation rate per unit surface area). We conclude that the dispersions are primarily driven by star formation. To explain the high surface brightness and optical line ratios, high thermal pressures in the warm ionized medium, WIM, are required (P/k ~  &gt; 106−107 K cm-3). Such thermal pressures in the WIM are similar to those observed in nearby starburst galaxies, but occur over much larger physical scales. Moreover, the relatively low ionization parameters necessary to fit the high surface brightnesses and optical line ratios suggest that the gas is not only directly associated with regions of star formation, but is wide spread throughout the general interstellar medium (ISM). Thus the optical emission line gas is a tracer of the large scale dynamics of the bulk of the ISM. We present a simple model for the energy input from young stars in an accreting galaxy, to argue that the intense star-formation is supporting high turbulent pressure, which roughly balances the gravitational pressure and thus enables distant gas accreting disks to maintain a Toomre disk instability parameter Q ~ 1. For a star formation efficiency of 3%, only 5−15% of the mechanical energy from young stars that is deposited in the ISM is needed to support the level of turbulence required for maintaining this balance. Since this balance is maintained by energy injected into the ISM by the young stars themselves, this suggests that star formation in high redshift galaxies is self-regulating.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201220555</doi><orcidid>https://orcid.org/0000-0001-5783-6544</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2013-07, Vol.555, p.np-np
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_hal_02561953v1
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Astronomy
Astrophysics
Balancing
Dispersions
Galaxies
galaxies: evolution
galaxies: formation
galaxies: high-redshift
galaxies: ISM
galaxies: kinematics and dynamics
galaxies: star formation
Interstellar matter
Optical properties
Physics
Star formation
Stars
title On the self-regulation of intense star-formation in galaxies at z = 1−3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A11%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20self-regulation%20of%20intense%20star-formation%20in%20galaxies%20at%20z%20=%201%E2%88%923&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Lehnert,%20M.%20D.&rft.date=2013-07-01&rft.volume=555&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201220555&rft_dat=%3Cproquest_hal_p%3E1677959637%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560129483&rft_id=info:pmid/&rfr_iscdi=true