Low-frequency Variability in Massive Stars: Core Generation or Surface Phenomenon?

Bowman et al. reported low-frequency photometric variability in 164 O- and B-type stars observed with K2 and TESS. They interpret these motions as internal gravity waves, which could be excited stochastically by convection in the cores of these stars. The detection of internal gravity waves in massi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2019-11, Vol.886 (1), p.L15
Hauptverfasser: Lecoanet, Daniel, Cantiello, Matteo, Quataert, Eliot, Couston, Louis-Alexandre, Burns, Keaton J., Pope, Benjamin J. S., Jermyn, Adam S., Favier, Benjamin, Bars, Michael Le
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page L15
container_title Astrophysical journal. Letters
container_volume 886
creator Lecoanet, Daniel
Cantiello, Matteo
Quataert, Eliot
Couston, Louis-Alexandre
Burns, Keaton J.
Pope, Benjamin J. S.
Jermyn, Adam S.
Favier, Benjamin
Bars, Michael Le
description Bowman et al. reported low-frequency photometric variability in 164 O- and B-type stars observed with K2 and TESS. They interpret these motions as internal gravity waves, which could be excited stochastically by convection in the cores of these stars. The detection of internal gravity waves in massive stars would help distinguish between massive stars with convective or radiative cores, determine core size, and would provide important constraints on massive star structure and evolution. In this work, we study the observational signature of internal gravity waves generated by core convection. We calculate the wave transfer function, which links the internal gravity wave amplitude at the base of the radiative zone to the surface luminosity variation. This transfer function varies by many orders of magnitude for frequencies 1 days−1, and has regularly spaced peaks near 1 days−1 due to standing modes. This is inconsistent with the observed spectra that have smooth "red noise" profiles, without the predicted regularly spaced peaks. The wave transfer function is only meaningful if the waves stay predominately linear. We next show that this is the case: low-frequency traveling waves do not break unless their luminosity exceeds the radiative luminosity of the star; the observed luminosity fluctuations at high frequencies are so small that standing modes would be stable to nonlinear instability. These simple calculations suggest that the observed low-frequency photometric variability in massive stars is not due to internal gravity waves generated in the core of these stars. We finish with a discussion of (sub)surface convection that produces low-frequency variability in low-mass stars; this is very similar to that observed in Bowman et al. in higher-mass stars.
doi_str_mv 10.3847/2041-8213/ab5446
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02558568v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357563127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-4542e8dee2853b9c01a6da8dd7c9ae1b82d3c253a2ebcac867381f44978ee4ea3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxYMo-Hn3uCAIgtH9TLZeRIpaIaJY9bpMNhPcUrNxN1X635sSqRc9DDM8fvOYeUlyyOiZ0DI_51SyVHMmzqFUUmYbyc5a2lzPVG0nuzHOKOU0Y3oneSr8V1oH_FhgY5fkFYKD0s1dtySuIfcQo_tEMu0gxAsy9gHJLTYYoHO-IT6Q6SLUYJE8vmHj3_tqLveTrRrmEQ9--l7ycnP9PJ6kxcPt3fiqSK1kqkulkhx1hci1EuXIUgZZBbqqcjsCZKXmlbBcCeBYWrA6y4VmtZSjXCNKBLGXnAy-bzA3bXDvEJbGgzOTq8KsNMqV0irTn6xnjwa2Db5_NXZm5heh6c8zXKhcZYLxvKfoQNngYwxYr20ZNauUzSpGs4rUDCn3K8fDivPtrye0s7nROjPMFEyZtqp78PQP8F_fb6yqicg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357563127</pqid></control><display><type>article</type><title>Low-frequency Variability in Massive Stars: Core Generation or Surface Phenomenon?</title><source>IOP Publishing Free Content</source><creator>Lecoanet, Daniel ; Cantiello, Matteo ; Quataert, Eliot ; Couston, Louis-Alexandre ; Burns, Keaton J. ; Pope, Benjamin J. S. ; Jermyn, Adam S. ; Favier, Benjamin ; Bars, Michael Le</creator><creatorcontrib>Lecoanet, Daniel ; Cantiello, Matteo ; Quataert, Eliot ; Couston, Louis-Alexandre ; Burns, Keaton J. ; Pope, Benjamin J. S. ; Jermyn, Adam S. ; Favier, Benjamin ; Bars, Michael Le</creatorcontrib><description>Bowman et al. reported low-frequency photometric variability in 164 O- and B-type stars observed with K2 and TESS. They interpret these motions as internal gravity waves, which could be excited stochastically by convection in the cores of these stars. The detection of internal gravity waves in massive stars would help distinguish between massive stars with convective or radiative cores, determine core size, and would provide important constraints on massive star structure and evolution. In this work, we study the observational signature of internal gravity waves generated by core convection. We calculate the wave transfer function, which links the internal gravity wave amplitude at the base of the radiative zone to the surface luminosity variation. This transfer function varies by many orders of magnitude for frequencies 1 days−1, and has regularly spaced peaks near 1 days−1 due to standing modes. This is inconsistent with the observed spectra that have smooth "red noise" profiles, without the predicted regularly spaced peaks. The wave transfer function is only meaningful if the waves stay predominately linear. We next show that this is the case: low-frequency traveling waves do not break unless their luminosity exceeds the radiative luminosity of the star; the observed luminosity fluctuations at high frequencies are so small that standing modes would be stable to nonlinear instability. These simple calculations suggest that the observed low-frequency photometric variability in massive stars is not due to internal gravity waves generated in the core of these stars. We finish with a discussion of (sub)surface convection that produces low-frequency variability in low-mass stars; this is very similar to that observed in Bowman et al. in higher-mass stars.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ab5446</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Asteroseismology ; Astrophysical fluid dynamics ; B stars ; Convection ; Cores ; Engineering Sciences ; Gravitational waves ; Gravity waves ; Internal gravity waves ; Internal waves ; Low mass stars ; Luminosity ; Massive stars ; Mathematical analysis ; Mechanics ; Noise prediction ; Photometry ; Stellar evolution ; Stellar oscillations ; Transfer functions ; Traveling waves ; Variability</subject><ispartof>Astrophysical journal. Letters, 2019-11, Vol.886 (1), p.L15</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 20, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-4542e8dee2853b9c01a6da8dd7c9ae1b82d3c253a2ebcac867381f44978ee4ea3</citedby><cites>FETCH-LOGICAL-c415t-4542e8dee2853b9c01a6da8dd7c9ae1b82d3c253a2ebcac867381f44978ee4ea3</cites><orcidid>0000-0003-4761-4766 ; 0000-0003-2595-9114 ; 0000-0001-5048-9973 ; 0000-0002-8171-8596 ; 0000-0001-9185-5044 ; 0000-0002-7635-9728 ; 0000-0002-4884-6190 ; 0000-0002-1184-2989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab5446/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38845,38867,53815,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ab5446$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://hal.science/hal-02558568$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lecoanet, Daniel</creatorcontrib><creatorcontrib>Cantiello, Matteo</creatorcontrib><creatorcontrib>Quataert, Eliot</creatorcontrib><creatorcontrib>Couston, Louis-Alexandre</creatorcontrib><creatorcontrib>Burns, Keaton J.</creatorcontrib><creatorcontrib>Pope, Benjamin J. S.</creatorcontrib><creatorcontrib>Jermyn, Adam S.</creatorcontrib><creatorcontrib>Favier, Benjamin</creatorcontrib><creatorcontrib>Bars, Michael Le</creatorcontrib><title>Low-frequency Variability in Massive Stars: Core Generation or Surface Phenomenon?</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>Bowman et al. reported low-frequency photometric variability in 164 O- and B-type stars observed with K2 and TESS. They interpret these motions as internal gravity waves, which could be excited stochastically by convection in the cores of these stars. The detection of internal gravity waves in massive stars would help distinguish between massive stars with convective or radiative cores, determine core size, and would provide important constraints on massive star structure and evolution. In this work, we study the observational signature of internal gravity waves generated by core convection. We calculate the wave transfer function, which links the internal gravity wave amplitude at the base of the radiative zone to the surface luminosity variation. This transfer function varies by many orders of magnitude for frequencies 1 days−1, and has regularly spaced peaks near 1 days−1 due to standing modes. This is inconsistent with the observed spectra that have smooth "red noise" profiles, without the predicted regularly spaced peaks. The wave transfer function is only meaningful if the waves stay predominately linear. We next show that this is the case: low-frequency traveling waves do not break unless their luminosity exceeds the radiative luminosity of the star; the observed luminosity fluctuations at high frequencies are so small that standing modes would be stable to nonlinear instability. These simple calculations suggest that the observed low-frequency photometric variability in massive stars is not due to internal gravity waves generated in the core of these stars. We finish with a discussion of (sub)surface convection that produces low-frequency variability in low-mass stars; this is very similar to that observed in Bowman et al. in higher-mass stars.</description><subject>Asteroseismology</subject><subject>Astrophysical fluid dynamics</subject><subject>B stars</subject><subject>Convection</subject><subject>Cores</subject><subject>Engineering Sciences</subject><subject>Gravitational waves</subject><subject>Gravity waves</subject><subject>Internal gravity waves</subject><subject>Internal waves</subject><subject>Low mass stars</subject><subject>Luminosity</subject><subject>Massive stars</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Noise prediction</subject><subject>Photometry</subject><subject>Stellar evolution</subject><subject>Stellar oscillations</subject><subject>Transfer functions</subject><subject>Traveling waves</subject><subject>Variability</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxYMo-Hn3uCAIgtH9TLZeRIpaIaJY9bpMNhPcUrNxN1X635sSqRc9DDM8fvOYeUlyyOiZ0DI_51SyVHMmzqFUUmYbyc5a2lzPVG0nuzHOKOU0Y3oneSr8V1oH_FhgY5fkFYKD0s1dtySuIfcQo_tEMu0gxAsy9gHJLTYYoHO-IT6Q6SLUYJE8vmHj3_tqLveTrRrmEQ9--l7ycnP9PJ6kxcPt3fiqSK1kqkulkhx1hci1EuXIUgZZBbqqcjsCZKXmlbBcCeBYWrA6y4VmtZSjXCNKBLGXnAy-bzA3bXDvEJbGgzOTq8KsNMqV0irTn6xnjwa2Db5_NXZm5heh6c8zXKhcZYLxvKfoQNngYwxYr20ZNauUzSpGs4rUDCn3K8fDivPtrye0s7nROjPMFEyZtqp78PQP8F_fb6yqicg</recordid><startdate>20191120</startdate><enddate>20191120</enddate><creator>Lecoanet, Daniel</creator><creator>Cantiello, Matteo</creator><creator>Quataert, Eliot</creator><creator>Couston, Louis-Alexandre</creator><creator>Burns, Keaton J.</creator><creator>Pope, Benjamin J. S.</creator><creator>Jermyn, Adam S.</creator><creator>Favier, Benjamin</creator><creator>Bars, Michael Le</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>Bristol : IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4761-4766</orcidid><orcidid>https://orcid.org/0000-0003-2595-9114</orcidid><orcidid>https://orcid.org/0000-0001-5048-9973</orcidid><orcidid>https://orcid.org/0000-0002-8171-8596</orcidid><orcidid>https://orcid.org/0000-0001-9185-5044</orcidid><orcidid>https://orcid.org/0000-0002-7635-9728</orcidid><orcidid>https://orcid.org/0000-0002-4884-6190</orcidid><orcidid>https://orcid.org/0000-0002-1184-2989</orcidid></search><sort><creationdate>20191120</creationdate><title>Low-frequency Variability in Massive Stars: Core Generation or Surface Phenomenon?</title><author>Lecoanet, Daniel ; Cantiello, Matteo ; Quataert, Eliot ; Couston, Louis-Alexandre ; Burns, Keaton J. ; Pope, Benjamin J. S. ; Jermyn, Adam S. ; Favier, Benjamin ; Bars, Michael Le</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-4542e8dee2853b9c01a6da8dd7c9ae1b82d3c253a2ebcac867381f44978ee4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Asteroseismology</topic><topic>Astrophysical fluid dynamics</topic><topic>B stars</topic><topic>Convection</topic><topic>Cores</topic><topic>Engineering Sciences</topic><topic>Gravitational waves</topic><topic>Gravity waves</topic><topic>Internal gravity waves</topic><topic>Internal waves</topic><topic>Low mass stars</topic><topic>Luminosity</topic><topic>Massive stars</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Noise prediction</topic><topic>Photometry</topic><topic>Stellar evolution</topic><topic>Stellar oscillations</topic><topic>Transfer functions</topic><topic>Traveling waves</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lecoanet, Daniel</creatorcontrib><creatorcontrib>Cantiello, Matteo</creatorcontrib><creatorcontrib>Quataert, Eliot</creatorcontrib><creatorcontrib>Couston, Louis-Alexandre</creatorcontrib><creatorcontrib>Burns, Keaton J.</creatorcontrib><creatorcontrib>Pope, Benjamin J. S.</creatorcontrib><creatorcontrib>Jermyn, Adam S.</creatorcontrib><creatorcontrib>Favier, Benjamin</creatorcontrib><creatorcontrib>Bars, Michael Le</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lecoanet, Daniel</au><au>Cantiello, Matteo</au><au>Quataert, Eliot</au><au>Couston, Louis-Alexandre</au><au>Burns, Keaton J.</au><au>Pope, Benjamin J. S.</au><au>Jermyn, Adam S.</au><au>Favier, Benjamin</au><au>Bars, Michael Le</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-frequency Variability in Massive Stars: Core Generation or Surface Phenomenon?</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2019-11-20</date><risdate>2019</risdate><volume>886</volume><issue>1</issue><spage>L15</spage><pages>L15-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>Bowman et al. reported low-frequency photometric variability in 164 O- and B-type stars observed with K2 and TESS. They interpret these motions as internal gravity waves, which could be excited stochastically by convection in the cores of these stars. The detection of internal gravity waves in massive stars would help distinguish between massive stars with convective or radiative cores, determine core size, and would provide important constraints on massive star structure and evolution. In this work, we study the observational signature of internal gravity waves generated by core convection. We calculate the wave transfer function, which links the internal gravity wave amplitude at the base of the radiative zone to the surface luminosity variation. This transfer function varies by many orders of magnitude for frequencies 1 days−1, and has regularly spaced peaks near 1 days−1 due to standing modes. This is inconsistent with the observed spectra that have smooth "red noise" profiles, without the predicted regularly spaced peaks. The wave transfer function is only meaningful if the waves stay predominately linear. We next show that this is the case: low-frequency traveling waves do not break unless their luminosity exceeds the radiative luminosity of the star; the observed luminosity fluctuations at high frequencies are so small that standing modes would be stable to nonlinear instability. These simple calculations suggest that the observed low-frequency photometric variability in massive stars is not due to internal gravity waves generated in the core of these stars. We finish with a discussion of (sub)surface convection that produces low-frequency variability in low-mass stars; this is very similar to that observed in Bowman et al. in higher-mass stars.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ab5446</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4761-4766</orcidid><orcidid>https://orcid.org/0000-0003-2595-9114</orcidid><orcidid>https://orcid.org/0000-0001-5048-9973</orcidid><orcidid>https://orcid.org/0000-0002-8171-8596</orcidid><orcidid>https://orcid.org/0000-0001-9185-5044</orcidid><orcidid>https://orcid.org/0000-0002-7635-9728</orcidid><orcidid>https://orcid.org/0000-0002-4884-6190</orcidid><orcidid>https://orcid.org/0000-0002-1184-2989</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2019-11, Vol.886 (1), p.L15
issn 2041-8205
2041-8213
language eng
recordid cdi_hal_primary_oai_HAL_hal_02558568v1
source IOP Publishing Free Content
subjects Asteroseismology
Astrophysical fluid dynamics
B stars
Convection
Cores
Engineering Sciences
Gravitational waves
Gravity waves
Internal gravity waves
Internal waves
Low mass stars
Luminosity
Massive stars
Mathematical analysis
Mechanics
Noise prediction
Photometry
Stellar evolution
Stellar oscillations
Transfer functions
Traveling waves
Variability
title Low-frequency Variability in Massive Stars: Core Generation or Surface Phenomenon?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-frequency%20Variability%20in%20Massive%20Stars:%20Core%20Generation%20or%20Surface%20Phenomenon?&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Lecoanet,%20Daniel&rft.date=2019-11-20&rft.volume=886&rft.issue=1&rft.spage=L15&rft.pages=L15-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ab5446&rft_dat=%3Cproquest_O3W%3E2357563127%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357563127&rft_id=info:pmid/&rfr_iscdi=true