New Trends in Ensemble Forecast Strategy: Uncertainty Quantification for Coarse-Grid Computational Fluid Dynamics

Numerical simulations of industrial and geophysical fluid flows cannot usually solve the exact Navier–Stokes equations. Accordingly, they encompass strong local errors. For some applications—like coupling models and measurements—these errors need to be accurately quantified, and ensemble forecast is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of computational methods in engineering 2021, Vol.28 (1), p.215-261
Hauptverfasser: Resseguier, V., Li, L., Jouan, G., Dérian, P., Mémin, E., Chapron, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue 1
container_start_page 215
container_title Archives of computational methods in engineering
container_volume 28
creator Resseguier, V.
Li, L.
Jouan, G.
Dérian, P.
Mémin, E.
Chapron, B.
description Numerical simulations of industrial and geophysical fluid flows cannot usually solve the exact Navier–Stokes equations. Accordingly, they encompass strong local errors. For some applications—like coupling models and measurements—these errors need to be accurately quantified, and ensemble forecast is a way to achieve this goal. This paper reviews the different approaches that have been proposed in this direction. A particular attention is given to the models under location uncertainty and stochastic advection by Lie transport. Besides, this paper introduces a new energy-budget-based stochastic subgrid scheme and a new way of parameterizing models under location uncertainty. Finally, new ensemble forecast simulations are presented. The skills of that new stochastic parameterization are compared to that of the dynamics under location uncertainty and of randomized-initial-condition methods.
doi_str_mv 10.1007/s11831-020-09437-x
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02558016v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02558016v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c3e66e9fbe6391222f4d06cc5bd06d626fcbcb2e6dc569edbad799285d4b8a3d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwA6y8ZRHwI3ESdlXpA6kCIdq15dhOcZU4xXag-XvcBrFkMzO6c89Ic6PoFsF7BGH24BDKCYohhjEsEpLFh7NohPKcxijLk_MwI5LEBFJ4GV05t4MwTYoCj6LPF_UN1lYZ6YA2YGacaspagXlrleDOg3dvuVfb_hFsjFDWc218D946bryutOBetwZUrQXTllun4oXVMszNvvOnHa_BvO6C9tQb3mjhrqOLitdO3fz2cbSZz9bTZbx6XTxPJ6tYEFr4UBWlqqhKRUmBMMZVIiEVIi1DkxTTSpSixIpKkdJCyZLLLHyUpzIpc04kGUd3w90PXrO91Q23PWu5ZsvJih01iNM0h4h-4eDFg1fY1jmrqj8AQXYMmA0BBwayU8DsECAyQC6YzVZZtms7Gx52_1E_h7qBDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New Trends in Ensemble Forecast Strategy: Uncertainty Quantification for Coarse-Grid Computational Fluid Dynamics</title><source>SpringerNature Journals</source><creator>Resseguier, V. ; Li, L. ; Jouan, G. ; Dérian, P. ; Mémin, E. ; Chapron, B.</creator><creatorcontrib>Resseguier, V. ; Li, L. ; Jouan, G. ; Dérian, P. ; Mémin, E. ; Chapron, B.</creatorcontrib><description>Numerical simulations of industrial and geophysical fluid flows cannot usually solve the exact Navier–Stokes equations. Accordingly, they encompass strong local errors. For some applications—like coupling models and measurements—these errors need to be accurately quantified, and ensemble forecast is a way to achieve this goal. This paper reviews the different approaches that have been proposed in this direction. A particular attention is given to the models under location uncertainty and stochastic advection by Lie transport. Besides, this paper introduces a new energy-budget-based stochastic subgrid scheme and a new way of parameterizing models under location uncertainty. Finally, new ensemble forecast simulations are presented. The skills of that new stochastic parameterization are compared to that of the dynamics under location uncertainty and of randomized-initial-condition methods.</description><identifier>ISSN: 1134-3060</identifier><identifier>EISSN: 1886-1784</identifier><identifier>DOI: 10.1007/s11831-020-09437-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chaotic Dynamics ; Engineering ; Engineering Sciences ; Fluid mechanics ; Mathematical and Computational Engineering ; Mechanics ; Nonlinear Sciences ; Ocean, Atmosphere ; Original Paper ; Physics ; Sciences of the Universe ; Signal and Image processing</subject><ispartof>Archives of computational methods in engineering, 2021, Vol.28 (1), p.215-261</ispartof><rights>CIMNE, Barcelona, Spain 2020</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c3e66e9fbe6391222f4d06cc5bd06d626fcbcb2e6dc569edbad799285d4b8a3d3</citedby><cites>FETCH-LOGICAL-c369t-c3e66e9fbe6391222f4d06cc5bd06d626fcbcb2e6dc569edbad799285d4b8a3d3</cites><orcidid>0000-0002-9301-9493 ; 0000-0003-2840-1837 ; 0000-0001-6088-8775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11831-020-09437-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11831-020-09437-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27926,27927,41490,42559,51321</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-02558016$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Resseguier, V.</creatorcontrib><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Jouan, G.</creatorcontrib><creatorcontrib>Dérian, P.</creatorcontrib><creatorcontrib>Mémin, E.</creatorcontrib><creatorcontrib>Chapron, B.</creatorcontrib><title>New Trends in Ensemble Forecast Strategy: Uncertainty Quantification for Coarse-Grid Computational Fluid Dynamics</title><title>Archives of computational methods in engineering</title><addtitle>Arch Computat Methods Eng</addtitle><description>Numerical simulations of industrial and geophysical fluid flows cannot usually solve the exact Navier–Stokes equations. Accordingly, they encompass strong local errors. For some applications—like coupling models and measurements—these errors need to be accurately quantified, and ensemble forecast is a way to achieve this goal. This paper reviews the different approaches that have been proposed in this direction. A particular attention is given to the models under location uncertainty and stochastic advection by Lie transport. Besides, this paper introduces a new energy-budget-based stochastic subgrid scheme and a new way of parameterizing models under location uncertainty. Finally, new ensemble forecast simulations are presented. The skills of that new stochastic parameterization are compared to that of the dynamics under location uncertainty and of randomized-initial-condition methods.</description><subject>Chaotic Dynamics</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Fluid mechanics</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechanics</subject><subject>Nonlinear Sciences</subject><subject>Ocean, Atmosphere</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><subject>Signal and Image processing</subject><issn>1134-3060</issn><issn>1886-1784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwA6y8ZRHwI3ESdlXpA6kCIdq15dhOcZU4xXag-XvcBrFkMzO6c89Ic6PoFsF7BGH24BDKCYohhjEsEpLFh7NohPKcxijLk_MwI5LEBFJ4GV05t4MwTYoCj6LPF_UN1lYZ6YA2YGacaspagXlrleDOg3dvuVfb_hFsjFDWc218D946bryutOBetwZUrQXTllun4oXVMszNvvOnHa_BvO6C9tQb3mjhrqOLitdO3fz2cbSZz9bTZbx6XTxPJ6tYEFr4UBWlqqhKRUmBMMZVIiEVIi1DkxTTSpSixIpKkdJCyZLLLHyUpzIpc04kGUd3w90PXrO91Q23PWu5ZsvJih01iNM0h4h-4eDFg1fY1jmrqj8AQXYMmA0BBwayU8DsECAyQC6YzVZZtms7Gx52_1E_h7qBDw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Resseguier, V.</creator><creator>Li, L.</creator><creator>Jouan, G.</creator><creator>Dérian, P.</creator><creator>Mémin, E.</creator><creator>Chapron, B.</creator><general>Springer Netherlands</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9301-9493</orcidid><orcidid>https://orcid.org/0000-0003-2840-1837</orcidid><orcidid>https://orcid.org/0000-0001-6088-8775</orcidid></search><sort><creationdate>2021</creationdate><title>New Trends in Ensemble Forecast Strategy: Uncertainty Quantification for Coarse-Grid Computational Fluid Dynamics</title><author>Resseguier, V. ; Li, L. ; Jouan, G. ; Dérian, P. ; Mémin, E. ; Chapron, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c3e66e9fbe6391222f4d06cc5bd06d626fcbcb2e6dc569edbad799285d4b8a3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chaotic Dynamics</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Fluid mechanics</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechanics</topic><topic>Nonlinear Sciences</topic><topic>Ocean, Atmosphere</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><topic>Signal and Image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Resseguier, V.</creatorcontrib><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Jouan, G.</creatorcontrib><creatorcontrib>Dérian, P.</creatorcontrib><creatorcontrib>Mémin, E.</creatorcontrib><creatorcontrib>Chapron, B.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Archives of computational methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Resseguier, V.</au><au>Li, L.</au><au>Jouan, G.</au><au>Dérian, P.</au><au>Mémin, E.</au><au>Chapron, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Trends in Ensemble Forecast Strategy: Uncertainty Quantification for Coarse-Grid Computational Fluid Dynamics</atitle><jtitle>Archives of computational methods in engineering</jtitle><stitle>Arch Computat Methods Eng</stitle><date>2021</date><risdate>2021</risdate><volume>28</volume><issue>1</issue><spage>215</spage><epage>261</epage><pages>215-261</pages><issn>1134-3060</issn><eissn>1886-1784</eissn><abstract>Numerical simulations of industrial and geophysical fluid flows cannot usually solve the exact Navier–Stokes equations. Accordingly, they encompass strong local errors. For some applications—like coupling models and measurements—these errors need to be accurately quantified, and ensemble forecast is a way to achieve this goal. This paper reviews the different approaches that have been proposed in this direction. A particular attention is given to the models under location uncertainty and stochastic advection by Lie transport. Besides, this paper introduces a new energy-budget-based stochastic subgrid scheme and a new way of parameterizing models under location uncertainty. Finally, new ensemble forecast simulations are presented. The skills of that new stochastic parameterization are compared to that of the dynamics under location uncertainty and of randomized-initial-condition methods.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11831-020-09437-x</doi><tpages>47</tpages><orcidid>https://orcid.org/0000-0002-9301-9493</orcidid><orcidid>https://orcid.org/0000-0003-2840-1837</orcidid><orcidid>https://orcid.org/0000-0001-6088-8775</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1134-3060
ispartof Archives of computational methods in engineering, 2021, Vol.28 (1), p.215-261
issn 1134-3060
1886-1784
language eng
recordid cdi_hal_primary_oai_HAL_hal_02558016v2
source SpringerNature Journals
subjects Chaotic Dynamics
Engineering
Engineering Sciences
Fluid mechanics
Mathematical and Computational Engineering
Mechanics
Nonlinear Sciences
Ocean, Atmosphere
Original Paper
Physics
Sciences of the Universe
Signal and Image processing
title New Trends in Ensemble Forecast Strategy: Uncertainty Quantification for Coarse-Grid Computational Fluid Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Trends%20in%20Ensemble%20Forecast%20Strategy:%20Uncertainty%20Quantification%20for%20Coarse-Grid%20Computational%20Fluid%20Dynamics&rft.jtitle=Archives%20of%20computational%20methods%20in%20engineering&rft.au=Resseguier,%20V.&rft.date=2021&rft.volume=28&rft.issue=1&rft.spage=215&rft.epage=261&rft.pages=215-261&rft.issn=1134-3060&rft.eissn=1886-1784&rft_id=info:doi/10.1007/s11831-020-09437-x&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02558016v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true