New Trends in Ensemble Forecast Strategy: Uncertainty Quantification for Coarse-Grid Computational Fluid Dynamics
Numerical simulations of industrial and geophysical fluid flows cannot usually solve the exact Navier–Stokes equations. Accordingly, they encompass strong local errors. For some applications—like coupling models and measurements—these errors need to be accurately quantified, and ensemble forecast is...
Gespeichert in:
Veröffentlicht in: | Archives of computational methods in engineering 2021, Vol.28 (1), p.215-261 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 261 |
---|---|
container_issue | 1 |
container_start_page | 215 |
container_title | Archives of computational methods in engineering |
container_volume | 28 |
creator | Resseguier, V. Li, L. Jouan, G. Dérian, P. Mémin, E. Chapron, B. |
description | Numerical simulations of industrial and geophysical fluid flows cannot usually solve the exact Navier–Stokes equations. Accordingly, they encompass strong local errors. For some applications—like coupling models and measurements—these errors need to be accurately quantified, and ensemble forecast is a way to achieve this goal. This paper reviews the different approaches that have been proposed in this direction. A particular attention is given to the models under location uncertainty and stochastic advection by Lie transport. Besides, this paper introduces a new energy-budget-based stochastic subgrid scheme and a new way of parameterizing models under location uncertainty. Finally, new ensemble forecast simulations are presented. The skills of that new stochastic parameterization are compared to that of the dynamics under location uncertainty and of randomized-initial-condition methods. |
doi_str_mv | 10.1007/s11831-020-09437-x |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02558016v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02558016v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c3e66e9fbe6391222f4d06cc5bd06d626fcbcb2e6dc569edbad799285d4b8a3d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwA6y8ZRHwI3ESdlXpA6kCIdq15dhOcZU4xXag-XvcBrFkMzO6c89Ic6PoFsF7BGH24BDKCYohhjEsEpLFh7NohPKcxijLk_MwI5LEBFJ4GV05t4MwTYoCj6LPF_UN1lYZ6YA2YGacaspagXlrleDOg3dvuVfb_hFsjFDWc218D946bryutOBetwZUrQXTllun4oXVMszNvvOnHa_BvO6C9tQb3mjhrqOLitdO3fz2cbSZz9bTZbx6XTxPJ6tYEFr4UBWlqqhKRUmBMMZVIiEVIi1DkxTTSpSixIpKkdJCyZLLLHyUpzIpc04kGUd3w90PXrO91Q23PWu5ZsvJih01iNM0h4h-4eDFg1fY1jmrqj8AQXYMmA0BBwayU8DsECAyQC6YzVZZtms7Gx52_1E_h7qBDw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New Trends in Ensemble Forecast Strategy: Uncertainty Quantification for Coarse-Grid Computational Fluid Dynamics</title><source>SpringerNature Journals</source><creator>Resseguier, V. ; Li, L. ; Jouan, G. ; Dérian, P. ; Mémin, E. ; Chapron, B.</creator><creatorcontrib>Resseguier, V. ; Li, L. ; Jouan, G. ; Dérian, P. ; Mémin, E. ; Chapron, B.</creatorcontrib><description>Numerical simulations of industrial and geophysical fluid flows cannot usually solve the exact Navier–Stokes equations. Accordingly, they encompass strong local errors. For some applications—like coupling models and measurements—these errors need to be accurately quantified, and ensemble forecast is a way to achieve this goal. This paper reviews the different approaches that have been proposed in this direction. A particular attention is given to the models under location uncertainty and stochastic advection by Lie transport. Besides, this paper introduces a new energy-budget-based stochastic subgrid scheme and a new way of parameterizing models under location uncertainty. Finally, new ensemble forecast simulations are presented. The skills of that new stochastic parameterization are compared to that of the dynamics under location uncertainty and of randomized-initial-condition methods.</description><identifier>ISSN: 1134-3060</identifier><identifier>EISSN: 1886-1784</identifier><identifier>DOI: 10.1007/s11831-020-09437-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chaotic Dynamics ; Engineering ; Engineering Sciences ; Fluid mechanics ; Mathematical and Computational Engineering ; Mechanics ; Nonlinear Sciences ; Ocean, Atmosphere ; Original Paper ; Physics ; Sciences of the Universe ; Signal and Image processing</subject><ispartof>Archives of computational methods in engineering, 2021, Vol.28 (1), p.215-261</ispartof><rights>CIMNE, Barcelona, Spain 2020</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c3e66e9fbe6391222f4d06cc5bd06d626fcbcb2e6dc569edbad799285d4b8a3d3</citedby><cites>FETCH-LOGICAL-c369t-c3e66e9fbe6391222f4d06cc5bd06d626fcbcb2e6dc569edbad799285d4b8a3d3</cites><orcidid>0000-0002-9301-9493 ; 0000-0003-2840-1837 ; 0000-0001-6088-8775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11831-020-09437-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11831-020-09437-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27926,27927,41490,42559,51321</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-02558016$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Resseguier, V.</creatorcontrib><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Jouan, G.</creatorcontrib><creatorcontrib>Dérian, P.</creatorcontrib><creatorcontrib>Mémin, E.</creatorcontrib><creatorcontrib>Chapron, B.</creatorcontrib><title>New Trends in Ensemble Forecast Strategy: Uncertainty Quantification for Coarse-Grid Computational Fluid Dynamics</title><title>Archives of computational methods in engineering</title><addtitle>Arch Computat Methods Eng</addtitle><description>Numerical simulations of industrial and geophysical fluid flows cannot usually solve the exact Navier–Stokes equations. Accordingly, they encompass strong local errors. For some applications—like coupling models and measurements—these errors need to be accurately quantified, and ensemble forecast is a way to achieve this goal. This paper reviews the different approaches that have been proposed in this direction. A particular attention is given to the models under location uncertainty and stochastic advection by Lie transport. Besides, this paper introduces a new energy-budget-based stochastic subgrid scheme and a new way of parameterizing models under location uncertainty. Finally, new ensemble forecast simulations are presented. The skills of that new stochastic parameterization are compared to that of the dynamics under location uncertainty and of randomized-initial-condition methods.</description><subject>Chaotic Dynamics</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Fluid mechanics</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechanics</subject><subject>Nonlinear Sciences</subject><subject>Ocean, Atmosphere</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><subject>Signal and Image processing</subject><issn>1134-3060</issn><issn>1886-1784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwA6y8ZRHwI3ESdlXpA6kCIdq15dhOcZU4xXag-XvcBrFkMzO6c89Ic6PoFsF7BGH24BDKCYohhjEsEpLFh7NohPKcxijLk_MwI5LEBFJ4GV05t4MwTYoCj6LPF_UN1lYZ6YA2YGacaspagXlrleDOg3dvuVfb_hFsjFDWc218D946bryutOBetwZUrQXTllun4oXVMszNvvOnHa_BvO6C9tQb3mjhrqOLitdO3fz2cbSZz9bTZbx6XTxPJ6tYEFr4UBWlqqhKRUmBMMZVIiEVIi1DkxTTSpSixIpKkdJCyZLLLHyUpzIpc04kGUd3w90PXrO91Q23PWu5ZsvJih01iNM0h4h-4eDFg1fY1jmrqj8AQXYMmA0BBwayU8DsECAyQC6YzVZZtms7Gx52_1E_h7qBDw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Resseguier, V.</creator><creator>Li, L.</creator><creator>Jouan, G.</creator><creator>Dérian, P.</creator><creator>Mémin, E.</creator><creator>Chapron, B.</creator><general>Springer Netherlands</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9301-9493</orcidid><orcidid>https://orcid.org/0000-0003-2840-1837</orcidid><orcidid>https://orcid.org/0000-0001-6088-8775</orcidid></search><sort><creationdate>2021</creationdate><title>New Trends in Ensemble Forecast Strategy: Uncertainty Quantification for Coarse-Grid Computational Fluid Dynamics</title><author>Resseguier, V. ; Li, L. ; Jouan, G. ; Dérian, P. ; Mémin, E. ; Chapron, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c3e66e9fbe6391222f4d06cc5bd06d626fcbcb2e6dc569edbad799285d4b8a3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chaotic Dynamics</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Fluid mechanics</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechanics</topic><topic>Nonlinear Sciences</topic><topic>Ocean, Atmosphere</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><topic>Signal and Image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Resseguier, V.</creatorcontrib><creatorcontrib>Li, L.</creatorcontrib><creatorcontrib>Jouan, G.</creatorcontrib><creatorcontrib>Dérian, P.</creatorcontrib><creatorcontrib>Mémin, E.</creatorcontrib><creatorcontrib>Chapron, B.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Archives of computational methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Resseguier, V.</au><au>Li, L.</au><au>Jouan, G.</au><au>Dérian, P.</au><au>Mémin, E.</au><au>Chapron, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Trends in Ensemble Forecast Strategy: Uncertainty Quantification for Coarse-Grid Computational Fluid Dynamics</atitle><jtitle>Archives of computational methods in engineering</jtitle><stitle>Arch Computat Methods Eng</stitle><date>2021</date><risdate>2021</risdate><volume>28</volume><issue>1</issue><spage>215</spage><epage>261</epage><pages>215-261</pages><issn>1134-3060</issn><eissn>1886-1784</eissn><abstract>Numerical simulations of industrial and geophysical fluid flows cannot usually solve the exact Navier–Stokes equations. Accordingly, they encompass strong local errors. For some applications—like coupling models and measurements—these errors need to be accurately quantified, and ensemble forecast is a way to achieve this goal. This paper reviews the different approaches that have been proposed in this direction. A particular attention is given to the models under location uncertainty and stochastic advection by Lie transport. Besides, this paper introduces a new energy-budget-based stochastic subgrid scheme and a new way of parameterizing models under location uncertainty. Finally, new ensemble forecast simulations are presented. The skills of that new stochastic parameterization are compared to that of the dynamics under location uncertainty and of randomized-initial-condition methods.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11831-020-09437-x</doi><tpages>47</tpages><orcidid>https://orcid.org/0000-0002-9301-9493</orcidid><orcidid>https://orcid.org/0000-0003-2840-1837</orcidid><orcidid>https://orcid.org/0000-0001-6088-8775</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1134-3060 |
ispartof | Archives of computational methods in engineering, 2021, Vol.28 (1), p.215-261 |
issn | 1134-3060 1886-1784 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02558016v2 |
source | SpringerNature Journals |
subjects | Chaotic Dynamics Engineering Engineering Sciences Fluid mechanics Mathematical and Computational Engineering Mechanics Nonlinear Sciences Ocean, Atmosphere Original Paper Physics Sciences of the Universe Signal and Image processing |
title | New Trends in Ensemble Forecast Strategy: Uncertainty Quantification for Coarse-Grid Computational Fluid Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A33%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Trends%20in%20Ensemble%20Forecast%20Strategy:%20Uncertainty%20Quantification%20for%20Coarse-Grid%20Computational%20Fluid%20Dynamics&rft.jtitle=Archives%20of%20computational%20methods%20in%20engineering&rft.au=Resseguier,%20V.&rft.date=2021&rft.volume=28&rft.issue=1&rft.spage=215&rft.epage=261&rft.pages=215-261&rft.issn=1134-3060&rft.eissn=1886-1784&rft_id=info:doi/10.1007/s11831-020-09437-x&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02558016v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |