A mathematical approach to deal with nanoparticle polydispersity in surface enhanced Raman spectroscopy to quantify antineoplastic agents

Antineoplastic agents are, for most of them, highly toxic drugs prepared at hospital following individualized prescription. To protect patients and healthcare workers, it is important to develop analytical tools able to identify and quantify such drugs on a wide concentration range. In this context,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Talanta (Oxford) 2020-09, Vol.217, p.121040, Article 121040
Hauptverfasser: Dowek, Antoine, Lê, Laetitia Minh Mai, Rohmer, Tom, Legrand, François-Xavier, Remita, Hynd, Lampre, Isabelle, Tfayli, Ali, Lavielle, Marc, Caudron, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 121040
container_title Talanta (Oxford)
container_volume 217
creator Dowek, Antoine
Lê, Laetitia Minh Mai
Rohmer, Tom
Legrand, François-Xavier
Remita, Hynd
Lampre, Isabelle
Tfayli, Ali
Lavielle, Marc
Caudron, Eric
description Antineoplastic agents are, for most of them, highly toxic drugs prepared at hospital following individualized prescription. To protect patients and healthcare workers, it is important to develop analytical tools able to identify and quantify such drugs on a wide concentration range. In this context, surface enhanced Raman spectroscopy (SERS) has been tested as a specific and sensitive technique. Despite the standardization of the nanoparticle synthesis, a polydispersity of nanoparticles in the suspension and a lack of reproducibility persist. This study focuses on the development of a new mathematical approach to deal with this nanoparticle polydispersity and its consequences on SERS signal variability through the feasibility of 5-fluorouracil (5FU) quantification using silver nanoparticles (AgNPs) and a handled Raman spectrophotometer. Variability has been maximized by synthetizing six different batches of AgNPs for an average size of 24.9 nm determined by transmission electron microscopy, with residual standard deviation of 17.0%. Regarding low performances of the standard multivariate data processing, an alternative approach based on the nearest neighbors were developed to quantify 5FU. By this approach, the predictive performance of the 5FU concentration was significantly improved. The mean absolute relative error (MARE) decreased from 16.8% with the traditional approach based on PLS regression to 6.30% with the nearest neighbors approach (p-value 
doi_str_mv 10.1016/j.talanta.2020.121040
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02557279v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0039914020303313</els_id><sourcerecordid>oai_HAL_hal_02557279v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-865868544496ba236c6f55027356c5096cd1df683cd556e30d8df29303c6b3023</originalsourceid><addsrcrecordid>eNqFUU1r3DAUFKWh2ab9CS269uCtPizZPpUlpE1gIRDas3grybUWr6VK2gT_hPzryjjNtRc9GGae3swg9ImSLSVUfj1uM4wwZdgywgrGKKnJG7ShbcMrLhr-Fm0I4V3V0ZpcovcpHQkhjBP-Dl1yVndtR9oNet7hE-TBlsdpGDGEED3oAWePjS3Ak8sDnmDyAWKhjBYHP87GpWBjcnnGbsLpHHvQFttpgElbgx_gBAUOVufok_ZhXvb9OZd7XT_jZUzWhxFSWYnht51y-oAuehiT_fgyr9Cv7zc_r2-r_f2Pu-vdvtJ1LXPVStHKVtR13ckDMC617IUgrOFCakE6qQ01vWy5NkJIy4lpTc-64lvLAy8BXKEv694BRhWiO0GclQenbnd7tWCECdGwpnukhStWri42UrT9q4AStdSgjuqlBrXUoNYaiu7zqgvnw8maV9W_3Avh20qwxemjs1El7eySnYslNGW8-88XfwHcK51t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A mathematical approach to deal with nanoparticle polydispersity in surface enhanced Raman spectroscopy to quantify antineoplastic agents</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Dowek, Antoine ; Lê, Laetitia Minh Mai ; Rohmer, Tom ; Legrand, François-Xavier ; Remita, Hynd ; Lampre, Isabelle ; Tfayli, Ali ; Lavielle, Marc ; Caudron, Eric</creator><creatorcontrib>Dowek, Antoine ; Lê, Laetitia Minh Mai ; Rohmer, Tom ; Legrand, François-Xavier ; Remita, Hynd ; Lampre, Isabelle ; Tfayli, Ali ; Lavielle, Marc ; Caudron, Eric</creatorcontrib><description>Antineoplastic agents are, for most of them, highly toxic drugs prepared at hospital following individualized prescription. To protect patients and healthcare workers, it is important to develop analytical tools able to identify and quantify such drugs on a wide concentration range. In this context, surface enhanced Raman spectroscopy (SERS) has been tested as a specific and sensitive technique. Despite the standardization of the nanoparticle synthesis, a polydispersity of nanoparticles in the suspension and a lack of reproducibility persist. This study focuses on the development of a new mathematical approach to deal with this nanoparticle polydispersity and its consequences on SERS signal variability through the feasibility of 5-fluorouracil (5FU) quantification using silver nanoparticles (AgNPs) and a handled Raman spectrophotometer. Variability has been maximized by synthetizing six different batches of AgNPs for an average size of 24.9 nm determined by transmission electron microscopy, with residual standard deviation of 17.0%. Regarding low performances of the standard multivariate data processing, an alternative approach based on the nearest neighbors were developed to quantify 5FU. By this approach, the predictive performance of the 5FU concentration was significantly improved. The mean absolute relative error (MARE) decreased from 16.8% with the traditional approach based on PLS regression to 6.30% with the nearest neighbors approach (p-value &lt; 0.001). This study highlights the importance of developing mathematics adapted to SERS analysis which could be a step to overcome the spectral variability in SERS and thus participate in the development of this technique as an analytical tool in quality control to quantify molecules with good performances, particularly in the pharmaceutical field. [Display omitted] •Quantitative analysis by Surface Enhanced Raman Spectroscopy.•Exaltation of Raman signal of 5-fluorouracil more than 104.•A predictive model dealing with variability of nanoparticle suspensions.•Predictive performance significantly improved by nearest neighbors algorithm.</description><identifier>ISSN: 0039-9140</identifier><identifier>EISSN: 1873-3573</identifier><identifier>DOI: 10.1016/j.talanta.2020.121040</identifier><identifier>PMID: 32498908</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Analytical chemistry ; Antineoplastic agents ; Antineoplastic Agents - analysis ; Chemical Sciences ; Classical Analysis and ODEs ; Fluorouracil - analysis ; Humans ; Least-Squares Analysis ; Material chemistry ; Mathematics ; Metal Nanoparticles - chemistry ; Nanoparticle polydispersity ; Non-linear regression ; Nonlinear Dynamics ; Particle Size ; Quantitative analysis ; Silver - chemistry ; Spectrum Analysis, Raman ; Surface enhanced Raman spectroscopy ; Surface Properties</subject><ispartof>Talanta (Oxford), 2020-09, Vol.217, p.121040, Article 121040</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright © 2020 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-865868544496ba236c6f55027356c5096cd1df683cd556e30d8df29303c6b3023</citedby><cites>FETCH-LOGICAL-c446t-865868544496ba236c6f55027356c5096cd1df683cd556e30d8df29303c6b3023</cites><orcidid>0000-0002-7271-7284 ; 0000-0003-3698-9327 ; 0000-0003-2186-9592 ; 0000-0002-9222-2852 ; 0000-0002-0834-1083 ; 0000-0003-0027-8638 ; 0000-0002-4751-2324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0039914020303313$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32498908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02557279$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dowek, Antoine</creatorcontrib><creatorcontrib>Lê, Laetitia Minh Mai</creatorcontrib><creatorcontrib>Rohmer, Tom</creatorcontrib><creatorcontrib>Legrand, François-Xavier</creatorcontrib><creatorcontrib>Remita, Hynd</creatorcontrib><creatorcontrib>Lampre, Isabelle</creatorcontrib><creatorcontrib>Tfayli, Ali</creatorcontrib><creatorcontrib>Lavielle, Marc</creatorcontrib><creatorcontrib>Caudron, Eric</creatorcontrib><title>A mathematical approach to deal with nanoparticle polydispersity in surface enhanced Raman spectroscopy to quantify antineoplastic agents</title><title>Talanta (Oxford)</title><addtitle>Talanta</addtitle><description>Antineoplastic agents are, for most of them, highly toxic drugs prepared at hospital following individualized prescription. To protect patients and healthcare workers, it is important to develop analytical tools able to identify and quantify such drugs on a wide concentration range. In this context, surface enhanced Raman spectroscopy (SERS) has been tested as a specific and sensitive technique. Despite the standardization of the nanoparticle synthesis, a polydispersity of nanoparticles in the suspension and a lack of reproducibility persist. This study focuses on the development of a new mathematical approach to deal with this nanoparticle polydispersity and its consequences on SERS signal variability through the feasibility of 5-fluorouracil (5FU) quantification using silver nanoparticles (AgNPs) and a handled Raman spectrophotometer. Variability has been maximized by synthetizing six different batches of AgNPs for an average size of 24.9 nm determined by transmission electron microscopy, with residual standard deviation of 17.0%. Regarding low performances of the standard multivariate data processing, an alternative approach based on the nearest neighbors were developed to quantify 5FU. By this approach, the predictive performance of the 5FU concentration was significantly improved. The mean absolute relative error (MARE) decreased from 16.8% with the traditional approach based on PLS regression to 6.30% with the nearest neighbors approach (p-value &lt; 0.001). This study highlights the importance of developing mathematics adapted to SERS analysis which could be a step to overcome the spectral variability in SERS and thus participate in the development of this technique as an analytical tool in quality control to quantify molecules with good performances, particularly in the pharmaceutical field. [Display omitted] •Quantitative analysis by Surface Enhanced Raman Spectroscopy.•Exaltation of Raman signal of 5-fluorouracil more than 104.•A predictive model dealing with variability of nanoparticle suspensions.•Predictive performance significantly improved by nearest neighbors algorithm.</description><subject>Analytical chemistry</subject><subject>Antineoplastic agents</subject><subject>Antineoplastic Agents - analysis</subject><subject>Chemical Sciences</subject><subject>Classical Analysis and ODEs</subject><subject>Fluorouracil - analysis</subject><subject>Humans</subject><subject>Least-Squares Analysis</subject><subject>Material chemistry</subject><subject>Mathematics</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Nanoparticle polydispersity</subject><subject>Non-linear regression</subject><subject>Nonlinear Dynamics</subject><subject>Particle Size</subject><subject>Quantitative analysis</subject><subject>Silver - chemistry</subject><subject>Spectrum Analysis, Raman</subject><subject>Surface enhanced Raman spectroscopy</subject><subject>Surface Properties</subject><issn>0039-9140</issn><issn>1873-3573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1r3DAUFKWh2ab9CS269uCtPizZPpUlpE1gIRDas3grybUWr6VK2gT_hPzryjjNtRc9GGae3swg9ImSLSVUfj1uM4wwZdgywgrGKKnJG7ShbcMrLhr-Fm0I4V3V0ZpcovcpHQkhjBP-Dl1yVndtR9oNet7hE-TBlsdpGDGEED3oAWePjS3Ak8sDnmDyAWKhjBYHP87GpWBjcnnGbsLpHHvQFttpgElbgx_gBAUOVufok_ZhXvb9OZd7XT_jZUzWhxFSWYnht51y-oAuehiT_fgyr9Cv7zc_r2-r_f2Pu-vdvtJ1LXPVStHKVtR13ckDMC617IUgrOFCakE6qQ01vWy5NkJIy4lpTc-64lvLAy8BXKEv694BRhWiO0GclQenbnd7tWCECdGwpnukhStWri42UrT9q4AStdSgjuqlBrXUoNYaiu7zqgvnw8maV9W_3Avh20qwxemjs1El7eySnYslNGW8-88XfwHcK51t</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Dowek, Antoine</creator><creator>Lê, Laetitia Minh Mai</creator><creator>Rohmer, Tom</creator><creator>Legrand, François-Xavier</creator><creator>Remita, Hynd</creator><creator>Lampre, Isabelle</creator><creator>Tfayli, Ali</creator><creator>Lavielle, Marc</creator><creator>Caudron, Eric</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7271-7284</orcidid><orcidid>https://orcid.org/0000-0003-3698-9327</orcidid><orcidid>https://orcid.org/0000-0003-2186-9592</orcidid><orcidid>https://orcid.org/0000-0002-9222-2852</orcidid><orcidid>https://orcid.org/0000-0002-0834-1083</orcidid><orcidid>https://orcid.org/0000-0003-0027-8638</orcidid><orcidid>https://orcid.org/0000-0002-4751-2324</orcidid></search><sort><creationdate>20200901</creationdate><title>A mathematical approach to deal with nanoparticle polydispersity in surface enhanced Raman spectroscopy to quantify antineoplastic agents</title><author>Dowek, Antoine ; Lê, Laetitia Minh Mai ; Rohmer, Tom ; Legrand, François-Xavier ; Remita, Hynd ; Lampre, Isabelle ; Tfayli, Ali ; Lavielle, Marc ; Caudron, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-865868544496ba236c6f55027356c5096cd1df683cd556e30d8df29303c6b3023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Antineoplastic agents</topic><topic>Antineoplastic Agents - analysis</topic><topic>Chemical Sciences</topic><topic>Classical Analysis and ODEs</topic><topic>Fluorouracil - analysis</topic><topic>Humans</topic><topic>Least-Squares Analysis</topic><topic>Material chemistry</topic><topic>Mathematics</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Nanoparticle polydispersity</topic><topic>Non-linear regression</topic><topic>Nonlinear Dynamics</topic><topic>Particle Size</topic><topic>Quantitative analysis</topic><topic>Silver - chemistry</topic><topic>Spectrum Analysis, Raman</topic><topic>Surface enhanced Raman spectroscopy</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dowek, Antoine</creatorcontrib><creatorcontrib>Lê, Laetitia Minh Mai</creatorcontrib><creatorcontrib>Rohmer, Tom</creatorcontrib><creatorcontrib>Legrand, François-Xavier</creatorcontrib><creatorcontrib>Remita, Hynd</creatorcontrib><creatorcontrib>Lampre, Isabelle</creatorcontrib><creatorcontrib>Tfayli, Ali</creatorcontrib><creatorcontrib>Lavielle, Marc</creatorcontrib><creatorcontrib>Caudron, Eric</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Talanta (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dowek, Antoine</au><au>Lê, Laetitia Minh Mai</au><au>Rohmer, Tom</au><au>Legrand, François-Xavier</au><au>Remita, Hynd</au><au>Lampre, Isabelle</au><au>Tfayli, Ali</au><au>Lavielle, Marc</au><au>Caudron, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mathematical approach to deal with nanoparticle polydispersity in surface enhanced Raman spectroscopy to quantify antineoplastic agents</atitle><jtitle>Talanta (Oxford)</jtitle><addtitle>Talanta</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>217</volume><spage>121040</spage><pages>121040-</pages><artnum>121040</artnum><issn>0039-9140</issn><eissn>1873-3573</eissn><abstract>Antineoplastic agents are, for most of them, highly toxic drugs prepared at hospital following individualized prescription. To protect patients and healthcare workers, it is important to develop analytical tools able to identify and quantify such drugs on a wide concentration range. In this context, surface enhanced Raman spectroscopy (SERS) has been tested as a specific and sensitive technique. Despite the standardization of the nanoparticle synthesis, a polydispersity of nanoparticles in the suspension and a lack of reproducibility persist. This study focuses on the development of a new mathematical approach to deal with this nanoparticle polydispersity and its consequences on SERS signal variability through the feasibility of 5-fluorouracil (5FU) quantification using silver nanoparticles (AgNPs) and a handled Raman spectrophotometer. Variability has been maximized by synthetizing six different batches of AgNPs for an average size of 24.9 nm determined by transmission electron microscopy, with residual standard deviation of 17.0%. Regarding low performances of the standard multivariate data processing, an alternative approach based on the nearest neighbors were developed to quantify 5FU. By this approach, the predictive performance of the 5FU concentration was significantly improved. The mean absolute relative error (MARE) decreased from 16.8% with the traditional approach based on PLS regression to 6.30% with the nearest neighbors approach (p-value &lt; 0.001). This study highlights the importance of developing mathematics adapted to SERS analysis which could be a step to overcome the spectral variability in SERS and thus participate in the development of this technique as an analytical tool in quality control to quantify molecules with good performances, particularly in the pharmaceutical field. [Display omitted] •Quantitative analysis by Surface Enhanced Raman Spectroscopy.•Exaltation of Raman signal of 5-fluorouracil more than 104.•A predictive model dealing with variability of nanoparticle suspensions.•Predictive performance significantly improved by nearest neighbors algorithm.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32498908</pmid><doi>10.1016/j.talanta.2020.121040</doi><orcidid>https://orcid.org/0000-0002-7271-7284</orcidid><orcidid>https://orcid.org/0000-0003-3698-9327</orcidid><orcidid>https://orcid.org/0000-0003-2186-9592</orcidid><orcidid>https://orcid.org/0000-0002-9222-2852</orcidid><orcidid>https://orcid.org/0000-0002-0834-1083</orcidid><orcidid>https://orcid.org/0000-0003-0027-8638</orcidid><orcidid>https://orcid.org/0000-0002-4751-2324</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-9140
ispartof Talanta (Oxford), 2020-09, Vol.217, p.121040, Article 121040
issn 0039-9140
1873-3573
language eng
recordid cdi_hal_primary_oai_HAL_hal_02557279v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Analytical chemistry
Antineoplastic agents
Antineoplastic Agents - analysis
Chemical Sciences
Classical Analysis and ODEs
Fluorouracil - analysis
Humans
Least-Squares Analysis
Material chemistry
Mathematics
Metal Nanoparticles - chemistry
Nanoparticle polydispersity
Non-linear regression
Nonlinear Dynamics
Particle Size
Quantitative analysis
Silver - chemistry
Spectrum Analysis, Raman
Surface enhanced Raman spectroscopy
Surface Properties
title A mathematical approach to deal with nanoparticle polydispersity in surface enhanced Raman spectroscopy to quantify antineoplastic agents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A20%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mathematical%20approach%20to%20deal%20with%20nanoparticle%20polydispersity%20in%20surface%20enhanced%20Raman%20spectroscopy%20to%20quantify%20antineoplastic%20agents&rft.jtitle=Talanta%20(Oxford)&rft.au=Dowek,%20Antoine&rft.date=2020-09-01&rft.volume=217&rft.spage=121040&rft.pages=121040-&rft.artnum=121040&rft.issn=0039-9140&rft.eissn=1873-3573&rft_id=info:doi/10.1016/j.talanta.2020.121040&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02557279v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32498908&rft_els_id=S0039914020303313&rfr_iscdi=true