Capabilities of MC3D to investigate the coolability of corium debris beds

•We present the capabilities of the computer code MC3D to simulate the coolability of debris bed.•We highlight recent improvements made in MC3D code to simulate diphasic flows in porous media.•We highlight the need for improving models.•The validation basis is presented. A nuclear severe accident pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and design 2017-08, Vol.319, p.48-60
Hauptverfasser: Raverdy, Bruno, Meignen, Renaud, Piar, Libuse, Picchi, Stephane, Janin, Tanguy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue
container_start_page 48
container_title Nuclear engineering and design
container_volume 319
creator Raverdy, Bruno
Meignen, Renaud
Piar, Libuse
Picchi, Stephane
Janin, Tanguy
description •We present the capabilities of the computer code MC3D to simulate the coolability of debris bed.•We highlight recent improvements made in MC3D code to simulate diphasic flows in porous media.•We highlight the need for improving models.•The validation basis is presented. A nuclear severe accident progression may lead to the formation of a corium debris bed either in the vessel lower head (in-vessel debris bed) or in the vessel pit (ex-vessel debris bed). For safety analyses it is essential to know if a debris bed is coolable or not, i.e. whether a given water mass flow rate poured into the debris bed – either from its top or from its bottom – will be sufficient to evacuate the residual heat and stop the accident progression. The IRSN code, mostly used for fuel-coolant interaction studies, has been modified with the addition of new friction laws for diphasic flows in porous media. The validation of the code in the case of debris coolability concerns the friction in isothermal configuration in cold and hot situations, the evaluation of critical heat flux and the bottom and top reflooding of debris beds. The results obtained with MC3D are in good agreement with the experimental data and are estimated satisfactory regarding to the nuclear safety issues.
doi_str_mv 10.1016/j.nucengdes.2017.04.005
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02553384v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549317301681</els_id><sourcerecordid>1941700315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-a280b9ddb2f9e1e5b92440da7cfb7c9c7c3ba530c99ff770345d94631f4b140a3</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKt_gwuePOw62SSmOZb6CRUvCt5CPmZrSt3UZFvof-8uK16dy8Dwe495j5BLChUFenuzrtqdw3blMVc1UFkBrwDEEZnQmaxLKdTHMZkA1KoUXLFTcpbzGoZR9YQ8L8zW2LAJXcBcxKZ4WbC7ootFaPeYu7AyHRbdJxYuxs0IHgbMxRR2X4VHm0IuLPp8Tk4as8l48bun5P3h_m3xVC5fH58X82XpOIOuNPUMrPLe1o1CisKqmnPwRrrGSqecdMwawcAp1TRSAuPCK37LaMMt5WDYlFyPvp9mo7cpfJl00NEE_TRf6uEGtRCMzfie9uzVyG5T_N71efQ67lLbv6ep4lQCMCp6So6USzHnhM2fLQU9dKzX-q9jPXSsgeu-4145H5XYB94HTDq7gK1DHxK6TvsY_vX4Ad-miDM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1941700315</pqid></control><display><type>article</type><title>Capabilities of MC3D to investigate the coolability of corium debris beds</title><source>Elsevier ScienceDirect Journals</source><creator>Raverdy, Bruno ; Meignen, Renaud ; Piar, Libuse ; Picchi, Stephane ; Janin, Tanguy</creator><creatorcontrib>Raverdy, Bruno ; Meignen, Renaud ; Piar, Libuse ; Picchi, Stephane ; Janin, Tanguy</creatorcontrib><description>•We present the capabilities of the computer code MC3D to simulate the coolability of debris bed.•We highlight recent improvements made in MC3D code to simulate diphasic flows in porous media.•We highlight the need for improving models.•The validation basis is presented. A nuclear severe accident progression may lead to the formation of a corium debris bed either in the vessel lower head (in-vessel debris bed) or in the vessel pit (ex-vessel debris bed). For safety analyses it is essential to know if a debris bed is coolable or not, i.e. whether a given water mass flow rate poured into the debris bed – either from its top or from its bottom – will be sufficient to evacuate the residual heat and stop the accident progression. The IRSN code, mostly used for fuel-coolant interaction studies, has been modified with the addition of new friction laws for diphasic flows in porous media. The validation of the code in the case of debris coolability concerns the friction in isothermal configuration in cold and hot situations, the evaluation of critical heat flux and the bottom and top reflooding of debris beds. The results obtained with MC3D are in good agreement with the experimental data and are estimated satisfactory regarding to the nuclear safety issues.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2017.04.005</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analysis ; Cooling ; Debris ; Detritus ; Flow rates ; Flow velocity ; Friction ; Heat flux ; Mass flow rate ; Nuclear accidents &amp; safety ; Nuclear engineering ; Nuclear fuels ; Nuclear safety ; Physics ; Porous media ; Safety regulations</subject><ispartof>Nuclear engineering and design, 2017-08, Vol.319, p.48-60</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Aug 1, 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-a280b9ddb2f9e1e5b92440da7cfb7c9c7c3ba530c99ff770345d94631f4b140a3</citedby><cites>FETCH-LOGICAL-c430t-a280b9ddb2f9e1e5b92440da7cfb7c9c7c3ba530c99ff770345d94631f4b140a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0029549317301681$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02553384$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Raverdy, Bruno</creatorcontrib><creatorcontrib>Meignen, Renaud</creatorcontrib><creatorcontrib>Piar, Libuse</creatorcontrib><creatorcontrib>Picchi, Stephane</creatorcontrib><creatorcontrib>Janin, Tanguy</creatorcontrib><title>Capabilities of MC3D to investigate the coolability of corium debris beds</title><title>Nuclear engineering and design</title><description>•We present the capabilities of the computer code MC3D to simulate the coolability of debris bed.•We highlight recent improvements made in MC3D code to simulate diphasic flows in porous media.•We highlight the need for improving models.•The validation basis is presented. A nuclear severe accident progression may lead to the formation of a corium debris bed either in the vessel lower head (in-vessel debris bed) or in the vessel pit (ex-vessel debris bed). For safety analyses it is essential to know if a debris bed is coolable or not, i.e. whether a given water mass flow rate poured into the debris bed – either from its top or from its bottom – will be sufficient to evacuate the residual heat and stop the accident progression. The IRSN code, mostly used for fuel-coolant interaction studies, has been modified with the addition of new friction laws for diphasic flows in porous media. The validation of the code in the case of debris coolability concerns the friction in isothermal configuration in cold and hot situations, the evaluation of critical heat flux and the bottom and top reflooding of debris beds. The results obtained with MC3D are in good agreement with the experimental data and are estimated satisfactory regarding to the nuclear safety issues.</description><subject>Analysis</subject><subject>Cooling</subject><subject>Debris</subject><subject>Detritus</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Friction</subject><subject>Heat flux</subject><subject>Mass flow rate</subject><subject>Nuclear accidents &amp; safety</subject><subject>Nuclear engineering</subject><subject>Nuclear fuels</subject><subject>Nuclear safety</subject><subject>Physics</subject><subject>Porous media</subject><subject>Safety regulations</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWKt_gwuePOw62SSmOZb6CRUvCt5CPmZrSt3UZFvof-8uK16dy8Dwe495j5BLChUFenuzrtqdw3blMVc1UFkBrwDEEZnQmaxLKdTHMZkA1KoUXLFTcpbzGoZR9YQ8L8zW2LAJXcBcxKZ4WbC7ootFaPeYu7AyHRbdJxYuxs0IHgbMxRR2X4VHm0IuLPp8Tk4as8l48bun5P3h_m3xVC5fH58X82XpOIOuNPUMrPLe1o1CisKqmnPwRrrGSqecdMwawcAp1TRSAuPCK37LaMMt5WDYlFyPvp9mo7cpfJl00NEE_TRf6uEGtRCMzfie9uzVyG5T_N71efQ67lLbv6ep4lQCMCp6So6USzHnhM2fLQU9dKzX-q9jPXSsgeu-4145H5XYB94HTDq7gK1DHxK6TvsY_vX4Ad-miDM</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Raverdy, Bruno</creator><creator>Meignen, Renaud</creator><creator>Piar, Libuse</creator><creator>Picchi, Stephane</creator><creator>Janin, Tanguy</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope></search><sort><creationdate>20170801</creationdate><title>Capabilities of MC3D to investigate the coolability of corium debris beds</title><author>Raverdy, Bruno ; Meignen, Renaud ; Piar, Libuse ; Picchi, Stephane ; Janin, Tanguy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-a280b9ddb2f9e1e5b92440da7cfb7c9c7c3ba530c99ff770345d94631f4b140a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Cooling</topic><topic>Debris</topic><topic>Detritus</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Friction</topic><topic>Heat flux</topic><topic>Mass flow rate</topic><topic>Nuclear accidents &amp; safety</topic><topic>Nuclear engineering</topic><topic>Nuclear fuels</topic><topic>Nuclear safety</topic><topic>Physics</topic><topic>Porous media</topic><topic>Safety regulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raverdy, Bruno</creatorcontrib><creatorcontrib>Meignen, Renaud</creatorcontrib><creatorcontrib>Piar, Libuse</creatorcontrib><creatorcontrib>Picchi, Stephane</creatorcontrib><creatorcontrib>Janin, Tanguy</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raverdy, Bruno</au><au>Meignen, Renaud</au><au>Piar, Libuse</au><au>Picchi, Stephane</au><au>Janin, Tanguy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capabilities of MC3D to investigate the coolability of corium debris beds</atitle><jtitle>Nuclear engineering and design</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>319</volume><spage>48</spage><epage>60</epage><pages>48-60</pages><issn>0029-5493</issn><eissn>1872-759X</eissn><abstract>•We present the capabilities of the computer code MC3D to simulate the coolability of debris bed.•We highlight recent improvements made in MC3D code to simulate diphasic flows in porous media.•We highlight the need for improving models.•The validation basis is presented. A nuclear severe accident progression may lead to the formation of a corium debris bed either in the vessel lower head (in-vessel debris bed) or in the vessel pit (ex-vessel debris bed). For safety analyses it is essential to know if a debris bed is coolable or not, i.e. whether a given water mass flow rate poured into the debris bed – either from its top or from its bottom – will be sufficient to evacuate the residual heat and stop the accident progression. The IRSN code, mostly used for fuel-coolant interaction studies, has been modified with the addition of new friction laws for diphasic flows in porous media. The validation of the code in the case of debris coolability concerns the friction in isothermal configuration in cold and hot situations, the evaluation of critical heat flux and the bottom and top reflooding of debris beds. The results obtained with MC3D are in good agreement with the experimental data and are estimated satisfactory regarding to the nuclear safety issues.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2017.04.005</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5493
ispartof Nuclear engineering and design, 2017-08, Vol.319, p.48-60
issn 0029-5493
1872-759X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02553384v1
source Elsevier ScienceDirect Journals
subjects Analysis
Cooling
Debris
Detritus
Flow rates
Flow velocity
Friction
Heat flux
Mass flow rate
Nuclear accidents & safety
Nuclear engineering
Nuclear fuels
Nuclear safety
Physics
Porous media
Safety regulations
title Capabilities of MC3D to investigate the coolability of corium debris beds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A27%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capabilities%20of%20MC3D%20to%20investigate%20the%20coolability%20of%20corium%20debris%20beds&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Raverdy,%20Bruno&rft.date=2017-08-01&rft.volume=319&rft.spage=48&rft.epage=60&rft.pages=48-60&rft.issn=0029-5493&rft.eissn=1872-759X&rft_id=info:doi/10.1016/j.nucengdes.2017.04.005&rft_dat=%3Cproquest_hal_p%3E1941700315%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1941700315&rft_id=info:pmid/&rft_els_id=S0029549317301681&rfr_iscdi=true