Invertibility Threshold for Nevanlinna Quotient Algebras
Let $\mathcal {N}$ be the Nevanlinna class, and let B be a Blaschke product. It is shown that the natural invertibility criterion in the quotient algebra $\mathcal {N} / B \mathcal {N}$ , that is, $|f| \ge e^{-H} $ on the set $B^{-1}\{0\}$ for some positive harmonic function H, holds if and only if...
Gespeichert in:
Veröffentlicht in: | Canadian journal of mathematics 2023-02, Vol.75 (1), p.225-244 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$\mathcal {N}$
be the Nevanlinna class, and let B be a Blaschke product. It is shown that the natural invertibility criterion in the quotient algebra
$\mathcal {N} / B \mathcal {N}$
, that is,
$|f| \ge e^{-H} $
on the set
$B^{-1}\{0\}$
for some positive harmonic function H, holds if and only if the function
$- \log |B|$
has a harmonic majorant on the set
$\{z\in \mathbb {D}:\rho (z,\Lambda )\geq e^{-H(z)}\}$
, at least for large enough functions H. We also study the corresponding class of positive harmonic functions H on the unit disc such that the latter condition holds. We also discuss the analogous invertibility problem in quotients of the Smirnov class. |
---|---|
ISSN: | 0008-414X 1496-4279 |
DOI: | 10.4153/S0008414X21000511 |