Optimization of an Antisolvent Method for RDX Recrystallization: Influence on Particle Size and Internal Defects

The present study deals with the synthesis and characterization of pure RDX as well as ND-RDX (nanodiamond–hexahydro-1,3,5-trinitro-1,3,5-triazine) core–shell composites. RDX is one of the most widely used energetic materials. Variation of the experimental conditions of the antisolvent crystallizati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal growth & design 2020-01, Vol.20 (1), p.130-138
Hauptverfasser: Guillevic, Mazheva, Pichot, Vincent, Cooper, James, Coquerel, Gérard, Borne, Lionel, Spitzer, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue 1
container_start_page 130
container_title Crystal growth & design
container_volume 20
creator Guillevic, Mazheva
Pichot, Vincent
Cooper, James
Coquerel, Gérard
Borne, Lionel
Spitzer, Denis
description The present study deals with the synthesis and characterization of pure RDX as well as ND-RDX (nanodiamond–hexahydro-1,3,5-trinitro-1,3,5-triazine) core–shell composites. RDX is one of the most widely used energetic materials. Variation of the experimental conditions of the antisolvent crystallization process leads to micrometer-sized RDX particles with tailored size and morphology. Tuning the cooling rate has a particular influence on the crystal growth rate and, as a consequence, on the formation of internal crystal defects in the form of fluid inclusion. The sensitivity of RDX toward mechanical stress is shown to be dependent on crystal shape (isotropy/anisotropy) and presence of inclusions. Introduction of NDs in the antisolvent process influences the reaction conditions in such a way that nanosized composite particles are formed. In the nanostructured final material NDs play the role of a core homogeneously coated by a thin layer of RDX. The fact that NDs act as seeds for RDX crystallization and core–shell growth during the antisolvent process is a result of great novelty. Nanostructured energetic materials with improved sensitivity properties can be obtained this way.
doi_str_mv 10.1021/acs.cgd.9b00893
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02551789v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e65999774</sourcerecordid><originalsourceid>FETCH-LOGICAL-a311t-e532adeaf40f67d64b9e496b1a61a4a9c7476302966686365fe7404417d56ff43</originalsourceid><addsrcrecordid>eNp1kEtPAjEUhRujiYiu3XZrDNBOHzPjjuADEgwGNXHXlE4rJWWGtIUEfr2dgO5c3Zt7zznJ-QC4xaiPUYYHUoW--q765QKhoiRnoINZVvRyhtj5704LcgmuQlghhHJOSAdsZpto1_Ygo21q2Bgoazisow2N2-k6wlcdl00FTePh_PELzrXy-xClcyfLA5zUxm11rTRMAW_SR6uchu_2oFNWld5R-1o6-KiNVjFcgwsjXdA3p9kFn89PH6Nxbzp7mYyG054kGMeeZiSTlZaGIsPzitNFqWnJF1hyLKksVU5TAZSVnPOCE86MzimiFOcV48ZQ0gV3x9yldGLj7Vr6vWikFePhVLQ3lDGG86Lc4aQdHLXKNyF4bf4MGIkWrkhwRYIrTnCT4_7oaB-rZts2DP-qfwC9DnzU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of an Antisolvent Method for RDX Recrystallization: Influence on Particle Size and Internal Defects</title><source>ACS Publications</source><creator>Guillevic, Mazheva ; Pichot, Vincent ; Cooper, James ; Coquerel, Gérard ; Borne, Lionel ; Spitzer, Denis</creator><creatorcontrib>Guillevic, Mazheva ; Pichot, Vincent ; Cooper, James ; Coquerel, Gérard ; Borne, Lionel ; Spitzer, Denis</creatorcontrib><description>The present study deals with the synthesis and characterization of pure RDX as well as ND-RDX (nanodiamond–hexahydro-1,3,5-trinitro-1,3,5-triazine) core–shell composites. RDX is one of the most widely used energetic materials. Variation of the experimental conditions of the antisolvent crystallization process leads to micrometer-sized RDX particles with tailored size and morphology. Tuning the cooling rate has a particular influence on the crystal growth rate and, as a consequence, on the formation of internal crystal defects in the form of fluid inclusion. The sensitivity of RDX toward mechanical stress is shown to be dependent on crystal shape (isotropy/anisotropy) and presence of inclusions. Introduction of NDs in the antisolvent process influences the reaction conditions in such a way that nanosized composite particles are formed. In the nanostructured final material NDs play the role of a core homogeneously coated by a thin layer of RDX. The fact that NDs act as seeds for RDX crystallization and core–shell growth during the antisolvent process is a result of great novelty. Nanostructured energetic materials with improved sensitivity properties can be obtained this way.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/acs.cgd.9b00893</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences ; Cristallography ; Engineering Sciences ; Inorganic chemistry ; Materials ; Organic chemistry</subject><ispartof>Crystal growth &amp; design, 2020-01, Vol.20 (1), p.130-138</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a311t-e532adeaf40f67d64b9e496b1a61a4a9c7476302966686365fe7404417d56ff43</citedby><cites>FETCH-LOGICAL-a311t-e532adeaf40f67d64b9e496b1a61a4a9c7476302966686365fe7404417d56ff43</cites><orcidid>0000-0002-9745-3481 ; 0000-0001-8977-8676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.cgd.9b00893$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.cgd.9b00893$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-02551789$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guillevic, Mazheva</creatorcontrib><creatorcontrib>Pichot, Vincent</creatorcontrib><creatorcontrib>Cooper, James</creatorcontrib><creatorcontrib>Coquerel, Gérard</creatorcontrib><creatorcontrib>Borne, Lionel</creatorcontrib><creatorcontrib>Spitzer, Denis</creatorcontrib><title>Optimization of an Antisolvent Method for RDX Recrystallization: Influence on Particle Size and Internal Defects</title><title>Crystal growth &amp; design</title><addtitle>Cryst. Growth Des</addtitle><description>The present study deals with the synthesis and characterization of pure RDX as well as ND-RDX (nanodiamond–hexahydro-1,3,5-trinitro-1,3,5-triazine) core–shell composites. RDX is one of the most widely used energetic materials. Variation of the experimental conditions of the antisolvent crystallization process leads to micrometer-sized RDX particles with tailored size and morphology. Tuning the cooling rate has a particular influence on the crystal growth rate and, as a consequence, on the formation of internal crystal defects in the form of fluid inclusion. The sensitivity of RDX toward mechanical stress is shown to be dependent on crystal shape (isotropy/anisotropy) and presence of inclusions. Introduction of NDs in the antisolvent process influences the reaction conditions in such a way that nanosized composite particles are formed. In the nanostructured final material NDs play the role of a core homogeneously coated by a thin layer of RDX. The fact that NDs act as seeds for RDX crystallization and core–shell growth during the antisolvent process is a result of great novelty. Nanostructured energetic materials with improved sensitivity properties can be obtained this way.</description><subject>Chemical Sciences</subject><subject>Cristallography</subject><subject>Engineering Sciences</subject><subject>Inorganic chemistry</subject><subject>Materials</subject><subject>Organic chemistry</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPAjEUhRujiYiu3XZrDNBOHzPjjuADEgwGNXHXlE4rJWWGtIUEfr2dgO5c3Zt7zznJ-QC4xaiPUYYHUoW--q765QKhoiRnoINZVvRyhtj5704LcgmuQlghhHJOSAdsZpto1_Ygo21q2Bgoazisow2N2-k6wlcdl00FTePh_PELzrXy-xClcyfLA5zUxm11rTRMAW_SR6uchu_2oFNWld5R-1o6-KiNVjFcgwsjXdA3p9kFn89PH6Nxbzp7mYyG054kGMeeZiSTlZaGIsPzitNFqWnJF1hyLKksVU5TAZSVnPOCE86MzimiFOcV48ZQ0gV3x9yldGLj7Vr6vWikFePhVLQ3lDGG86Lc4aQdHLXKNyF4bf4MGIkWrkhwRYIrTnCT4_7oaB-rZts2DP-qfwC9DnzU</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Guillevic, Mazheva</creator><creator>Pichot, Vincent</creator><creator>Cooper, James</creator><creator>Coquerel, Gérard</creator><creator>Borne, Lionel</creator><creator>Spitzer, Denis</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9745-3481</orcidid><orcidid>https://orcid.org/0000-0001-8977-8676</orcidid></search><sort><creationdate>20200102</creationdate><title>Optimization of an Antisolvent Method for RDX Recrystallization: Influence on Particle Size and Internal Defects</title><author>Guillevic, Mazheva ; Pichot, Vincent ; Cooper, James ; Coquerel, Gérard ; Borne, Lionel ; Spitzer, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a311t-e532adeaf40f67d64b9e496b1a61a4a9c7476302966686365fe7404417d56ff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical Sciences</topic><topic>Cristallography</topic><topic>Engineering Sciences</topic><topic>Inorganic chemistry</topic><topic>Materials</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guillevic, Mazheva</creatorcontrib><creatorcontrib>Pichot, Vincent</creatorcontrib><creatorcontrib>Cooper, James</creatorcontrib><creatorcontrib>Coquerel, Gérard</creatorcontrib><creatorcontrib>Borne, Lionel</creatorcontrib><creatorcontrib>Spitzer, Denis</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Crystal growth &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillevic, Mazheva</au><au>Pichot, Vincent</au><au>Cooper, James</au><au>Coquerel, Gérard</au><au>Borne, Lionel</au><au>Spitzer, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of an Antisolvent Method for RDX Recrystallization: Influence on Particle Size and Internal Defects</atitle><jtitle>Crystal growth &amp; design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2020-01-02</date><risdate>2020</risdate><volume>20</volume><issue>1</issue><spage>130</spage><epage>138</epage><pages>130-138</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>The present study deals with the synthesis and characterization of pure RDX as well as ND-RDX (nanodiamond–hexahydro-1,3,5-trinitro-1,3,5-triazine) core–shell composites. RDX is one of the most widely used energetic materials. Variation of the experimental conditions of the antisolvent crystallization process leads to micrometer-sized RDX particles with tailored size and morphology. Tuning the cooling rate has a particular influence on the crystal growth rate and, as a consequence, on the formation of internal crystal defects in the form of fluid inclusion. The sensitivity of RDX toward mechanical stress is shown to be dependent on crystal shape (isotropy/anisotropy) and presence of inclusions. Introduction of NDs in the antisolvent process influences the reaction conditions in such a way that nanosized composite particles are formed. In the nanostructured final material NDs play the role of a core homogeneously coated by a thin layer of RDX. The fact that NDs act as seeds for RDX crystallization and core–shell growth during the antisolvent process is a result of great novelty. Nanostructured energetic materials with improved sensitivity properties can be obtained this way.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.cgd.9b00893</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9745-3481</orcidid><orcidid>https://orcid.org/0000-0001-8977-8676</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1528-7483
ispartof Crystal growth & design, 2020-01, Vol.20 (1), p.130-138
issn 1528-7483
1528-7505
language eng
recordid cdi_hal_primary_oai_HAL_hal_02551789v1
source ACS Publications
subjects Chemical Sciences
Cristallography
Engineering Sciences
Inorganic chemistry
Materials
Organic chemistry
title Optimization of an Antisolvent Method for RDX Recrystallization: Influence on Particle Size and Internal Defects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20an%20Antisolvent%20Method%20for%20RDX%20Recrystallization:%20Influence%20on%20Particle%20Size%20and%20Internal%20Defects&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Guillevic,%20Mazheva&rft.date=2020-01-02&rft.volume=20&rft.issue=1&rft.spage=130&rft.epage=138&rft.pages=130-138&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/acs.cgd.9b00893&rft_dat=%3Cacs_hal_p%3Ee65999774%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true