Optimization of an Antisolvent Method for RDX Recrystallization: Influence on Particle Size and Internal Defects
The present study deals with the synthesis and characterization of pure RDX as well as ND-RDX (nanodiamond–hexahydro-1,3,5-trinitro-1,3,5-triazine) core–shell composites. RDX is one of the most widely used energetic materials. Variation of the experimental conditions of the antisolvent crystallizati...
Gespeichert in:
Veröffentlicht in: | Crystal growth & design 2020-01, Vol.20 (1), p.130-138 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | 1 |
container_start_page | 130 |
container_title | Crystal growth & design |
container_volume | 20 |
creator | Guillevic, Mazheva Pichot, Vincent Cooper, James Coquerel, Gérard Borne, Lionel Spitzer, Denis |
description | The present study deals with the synthesis and characterization of pure RDX as well as ND-RDX (nanodiamond–hexahydro-1,3,5-trinitro-1,3,5-triazine) core–shell composites. RDX is one of the most widely used energetic materials. Variation of the experimental conditions of the antisolvent crystallization process leads to micrometer-sized RDX particles with tailored size and morphology. Tuning the cooling rate has a particular influence on the crystal growth rate and, as a consequence, on the formation of internal crystal defects in the form of fluid inclusion. The sensitivity of RDX toward mechanical stress is shown to be dependent on crystal shape (isotropy/anisotropy) and presence of inclusions. Introduction of NDs in the antisolvent process influences the reaction conditions in such a way that nanosized composite particles are formed. In the nanostructured final material NDs play the role of a core homogeneously coated by a thin layer of RDX. The fact that NDs act as seeds for RDX crystallization and core–shell growth during the antisolvent process is a result of great novelty. Nanostructured energetic materials with improved sensitivity properties can be obtained this way. |
doi_str_mv | 10.1021/acs.cgd.9b00893 |
format | Article |
fullrecord | <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02551789v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e65999774</sourcerecordid><originalsourceid>FETCH-LOGICAL-a311t-e532adeaf40f67d64b9e496b1a61a4a9c7476302966686365fe7404417d56ff43</originalsourceid><addsrcrecordid>eNp1kEtPAjEUhRujiYiu3XZrDNBOHzPjjuADEgwGNXHXlE4rJWWGtIUEfr2dgO5c3Zt7zznJ-QC4xaiPUYYHUoW--q765QKhoiRnoINZVvRyhtj5704LcgmuQlghhHJOSAdsZpto1_Ygo21q2Bgoazisow2N2-k6wlcdl00FTePh_PELzrXy-xClcyfLA5zUxm11rTRMAW_SR6uchu_2oFNWld5R-1o6-KiNVjFcgwsjXdA3p9kFn89PH6Nxbzp7mYyG054kGMeeZiSTlZaGIsPzitNFqWnJF1hyLKksVU5TAZSVnPOCE86MzimiFOcV48ZQ0gV3x9yldGLj7Vr6vWikFePhVLQ3lDGG86Lc4aQdHLXKNyF4bf4MGIkWrkhwRYIrTnCT4_7oaB-rZts2DP-qfwC9DnzU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of an Antisolvent Method for RDX Recrystallization: Influence on Particle Size and Internal Defects</title><source>ACS Publications</source><creator>Guillevic, Mazheva ; Pichot, Vincent ; Cooper, James ; Coquerel, Gérard ; Borne, Lionel ; Spitzer, Denis</creator><creatorcontrib>Guillevic, Mazheva ; Pichot, Vincent ; Cooper, James ; Coquerel, Gérard ; Borne, Lionel ; Spitzer, Denis</creatorcontrib><description>The present study deals with the synthesis and characterization of pure RDX as well as ND-RDX (nanodiamond–hexahydro-1,3,5-trinitro-1,3,5-triazine) core–shell composites. RDX is one of the most widely used energetic materials. Variation of the experimental conditions of the antisolvent crystallization process leads to micrometer-sized RDX particles with tailored size and morphology. Tuning the cooling rate has a particular influence on the crystal growth rate and, as a consequence, on the formation of internal crystal defects in the form of fluid inclusion. The sensitivity of RDX toward mechanical stress is shown to be dependent on crystal shape (isotropy/anisotropy) and presence of inclusions. Introduction of NDs in the antisolvent process influences the reaction conditions in such a way that nanosized composite particles are formed. In the nanostructured final material NDs play the role of a core homogeneously coated by a thin layer of RDX. The fact that NDs act as seeds for RDX crystallization and core–shell growth during the antisolvent process is a result of great novelty. Nanostructured energetic materials with improved sensitivity properties can be obtained this way.</description><identifier>ISSN: 1528-7483</identifier><identifier>EISSN: 1528-7505</identifier><identifier>DOI: 10.1021/acs.cgd.9b00893</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences ; Cristallography ; Engineering Sciences ; Inorganic chemistry ; Materials ; Organic chemistry</subject><ispartof>Crystal growth & design, 2020-01, Vol.20 (1), p.130-138</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a311t-e532adeaf40f67d64b9e496b1a61a4a9c7476302966686365fe7404417d56ff43</citedby><cites>FETCH-LOGICAL-a311t-e532adeaf40f67d64b9e496b1a61a4a9c7476302966686365fe7404417d56ff43</cites><orcidid>0000-0002-9745-3481 ; 0000-0001-8977-8676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.cgd.9b00893$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.cgd.9b00893$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-02551789$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guillevic, Mazheva</creatorcontrib><creatorcontrib>Pichot, Vincent</creatorcontrib><creatorcontrib>Cooper, James</creatorcontrib><creatorcontrib>Coquerel, Gérard</creatorcontrib><creatorcontrib>Borne, Lionel</creatorcontrib><creatorcontrib>Spitzer, Denis</creatorcontrib><title>Optimization of an Antisolvent Method for RDX Recrystallization: Influence on Particle Size and Internal Defects</title><title>Crystal growth & design</title><addtitle>Cryst. Growth Des</addtitle><description>The present study deals with the synthesis and characterization of pure RDX as well as ND-RDX (nanodiamond–hexahydro-1,3,5-trinitro-1,3,5-triazine) core–shell composites. RDX is one of the most widely used energetic materials. Variation of the experimental conditions of the antisolvent crystallization process leads to micrometer-sized RDX particles with tailored size and morphology. Tuning the cooling rate has a particular influence on the crystal growth rate and, as a consequence, on the formation of internal crystal defects in the form of fluid inclusion. The sensitivity of RDX toward mechanical stress is shown to be dependent on crystal shape (isotropy/anisotropy) and presence of inclusions. Introduction of NDs in the antisolvent process influences the reaction conditions in such a way that nanosized composite particles are formed. In the nanostructured final material NDs play the role of a core homogeneously coated by a thin layer of RDX. The fact that NDs act as seeds for RDX crystallization and core–shell growth during the antisolvent process is a result of great novelty. Nanostructured energetic materials with improved sensitivity properties can be obtained this way.</description><subject>Chemical Sciences</subject><subject>Cristallography</subject><subject>Engineering Sciences</subject><subject>Inorganic chemistry</subject><subject>Materials</subject><subject>Organic chemistry</subject><issn>1528-7483</issn><issn>1528-7505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPAjEUhRujiYiu3XZrDNBOHzPjjuADEgwGNXHXlE4rJWWGtIUEfr2dgO5c3Zt7zznJ-QC4xaiPUYYHUoW--q765QKhoiRnoINZVvRyhtj5704LcgmuQlghhHJOSAdsZpto1_Ygo21q2Bgoazisow2N2-k6wlcdl00FTePh_PELzrXy-xClcyfLA5zUxm11rTRMAW_SR6uchu_2oFNWld5R-1o6-KiNVjFcgwsjXdA3p9kFn89PH6Nxbzp7mYyG054kGMeeZiSTlZaGIsPzitNFqWnJF1hyLKksVU5TAZSVnPOCE86MzimiFOcV48ZQ0gV3x9yldGLj7Vr6vWikFePhVLQ3lDGG86Lc4aQdHLXKNyF4bf4MGIkWrkhwRYIrTnCT4_7oaB-rZts2DP-qfwC9DnzU</recordid><startdate>20200102</startdate><enddate>20200102</enddate><creator>Guillevic, Mazheva</creator><creator>Pichot, Vincent</creator><creator>Cooper, James</creator><creator>Coquerel, Gérard</creator><creator>Borne, Lionel</creator><creator>Spitzer, Denis</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9745-3481</orcidid><orcidid>https://orcid.org/0000-0001-8977-8676</orcidid></search><sort><creationdate>20200102</creationdate><title>Optimization of an Antisolvent Method for RDX Recrystallization: Influence on Particle Size and Internal Defects</title><author>Guillevic, Mazheva ; Pichot, Vincent ; Cooper, James ; Coquerel, Gérard ; Borne, Lionel ; Spitzer, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a311t-e532adeaf40f67d64b9e496b1a61a4a9c7476302966686365fe7404417d56ff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemical Sciences</topic><topic>Cristallography</topic><topic>Engineering Sciences</topic><topic>Inorganic chemistry</topic><topic>Materials</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guillevic, Mazheva</creatorcontrib><creatorcontrib>Pichot, Vincent</creatorcontrib><creatorcontrib>Cooper, James</creatorcontrib><creatorcontrib>Coquerel, Gérard</creatorcontrib><creatorcontrib>Borne, Lionel</creatorcontrib><creatorcontrib>Spitzer, Denis</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Crystal growth & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillevic, Mazheva</au><au>Pichot, Vincent</au><au>Cooper, James</au><au>Coquerel, Gérard</au><au>Borne, Lionel</au><au>Spitzer, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of an Antisolvent Method for RDX Recrystallization: Influence on Particle Size and Internal Defects</atitle><jtitle>Crystal growth & design</jtitle><addtitle>Cryst. Growth Des</addtitle><date>2020-01-02</date><risdate>2020</risdate><volume>20</volume><issue>1</issue><spage>130</spage><epage>138</epage><pages>130-138</pages><issn>1528-7483</issn><eissn>1528-7505</eissn><abstract>The present study deals with the synthesis and characterization of pure RDX as well as ND-RDX (nanodiamond–hexahydro-1,3,5-trinitro-1,3,5-triazine) core–shell composites. RDX is one of the most widely used energetic materials. Variation of the experimental conditions of the antisolvent crystallization process leads to micrometer-sized RDX particles with tailored size and morphology. Tuning the cooling rate has a particular influence on the crystal growth rate and, as a consequence, on the formation of internal crystal defects in the form of fluid inclusion. The sensitivity of RDX toward mechanical stress is shown to be dependent on crystal shape (isotropy/anisotropy) and presence of inclusions. Introduction of NDs in the antisolvent process influences the reaction conditions in such a way that nanosized composite particles are formed. In the nanostructured final material NDs play the role of a core homogeneously coated by a thin layer of RDX. The fact that NDs act as seeds for RDX crystallization and core–shell growth during the antisolvent process is a result of great novelty. Nanostructured energetic materials with improved sensitivity properties can be obtained this way.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.cgd.9b00893</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9745-3481</orcidid><orcidid>https://orcid.org/0000-0001-8977-8676</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1528-7483 |
ispartof | Crystal growth & design, 2020-01, Vol.20 (1), p.130-138 |
issn | 1528-7483 1528-7505 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02551789v1 |
source | ACS Publications |
subjects | Chemical Sciences Cristallography Engineering Sciences Inorganic chemistry Materials Organic chemistry |
title | Optimization of an Antisolvent Method for RDX Recrystallization: Influence on Particle Size and Internal Defects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20an%20Antisolvent%20Method%20for%20RDX%20Recrystallization:%20Influence%20on%20Particle%20Size%20and%20Internal%20Defects&rft.jtitle=Crystal%20growth%20&%20design&rft.au=Guillevic,%20Mazheva&rft.date=2020-01-02&rft.volume=20&rft.issue=1&rft.spage=130&rft.epage=138&rft.pages=130-138&rft.issn=1528-7483&rft.eissn=1528-7505&rft_id=info:doi/10.1021/acs.cgd.9b00893&rft_dat=%3Cacs_hal_p%3Ee65999774%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |