On the structure of the transition disk around TW Hydrae

Context. For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at different wavelengths has led to a variety of proposed disk structures. Rather than being inconsistent, the individual models might...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2014-04, Vol.564, p.np-np
Hauptverfasser: Menu, J., van Boekel, R., Henning, Th, Chandler, C. J., Linz, H., Benisty, M., Lacour, S., Min, M., Waelkens, C., Andrews, S. M., Calvet, N., Carpenter, J. M., Corder, S. A., Deller, A. T., Greaves, J. S., Harris, R. J., Isella, A., Kwon, W., Lazio, J., Le Bouquin, J.-B., Ménard, F., Mundy, L. G., Pérez, L. M., Ricci, L., Sargent, A. I., Storm, S., Testi, L., Wilner, D. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page np
container_issue
container_start_page np
container_title Astronomy and astrophysics (Berlin)
container_volume 564
creator Menu, J.
van Boekel, R.
Henning, Th
Chandler, C. J.
Linz, H.
Benisty, M.
Lacour, S.
Min, M.
Waelkens, C.
Andrews, S. M.
Calvet, N.
Carpenter, J. M.
Corder, S. A.
Deller, A. T.
Greaves, J. S.
Harris, R. J.
Isella, A.
Kwon, W.
Lazio, J.
Le Bouquin, J.-B.
Ménard, F.
Mundy, L. G.
Pérez, L. M.
Ricci, L.
Sargent, A. I.
Storm, S.
Testi, L.
Wilner, D. J.
description Context. For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at different wavelengths has led to a variety of proposed disk structures. Rather than being inconsistent, the individual models might point to the different faces of physical processes going on in disks, such as dust growth and planet formation. Aims. Our aim is to investigate the structure of the transition disk again and to find to what extent we can reconcile apparent model differences. Methods. A large set of high-angular-resolution data was collected from near-infrared to centimeter wavelengths. We investigated the existing disk models and established a new self-consistent radiative-transfer model. A genetic fitting algorithm was used to automatize the parameter fitting, and uncertainties were investigated in a Bayesian framework. Results. Simple disk models with a vertical inner rim and a radially homogeneous dust composition from small to large grains cannot reproduce the combined data set. Two modifications are applied to this simple disk model: (1) the inner rim is smoothed by exponentially decreasing the surface density in the inner ~3 AU, and (2) the largest grains (>100 μm) are concentrated towards the inner disk region. Both properties can be linked to fundamental processes that determine the evolution of protoplanetary disks: the shaping by a possible companion and the different regimes of dust-grain growth, respectively. Conclusions. The full interferometric data set from near-infrared to centimeter wavelengths requires a revision of existing models for the TW Hya disk. We present a new model that incorporates the characteristic structures of previous models but deviates in two key aspects: it does not have a sharp edge at 4 AU, and the surface density of large grains differs from that of smaller grains. This is the first successful radiative-transfer-based model for a full set of interferometric data.
doi_str_mv 10.1051/0004-6361/201322961
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02547936v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651438926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-dd2cd60bdc623dd87f66e7309f8659aac56933bc362a66896ff0ba4a97e3d9d3</originalsourceid><addsrcrecordid>eNqNkLFOwzAQhi0EEqXwBCwZYQi1fcklZqsqIKBIMFTqaLmxo4amSbETRDdWXpMnISEoM9PpTt__6_QRcsnoDaMhm1FKAx8B2YxTBpwLZEdkwgLgPo0CPCaTkTglZ869ditnMUzI7XPlNRvjuca2WdNa49X576GxqnJFU9SVpwu39ZSt20p7y9X351dy0FaZc3KSq9KZi785Jcv7u-Ui8dPnh8fFPPWzQMSNrzXPNNK1zpCD1nGUI5oIqMhjDIVSWYgCYJ0BcoUYC8xzulaBEpEBLTRMyfVQu1Gl3Ntip-xB1qqQyTyV_Y3yMIgE4Dvr2KuB3dv6rTWukbvCZaYsVWXq1kmGYSclFhz_gYIQXWsUdigMaGZr56zJxzcYlb1_2duVvV05-u9S_pAqXGM-xoiyW4kRRKGM6UomVLCnlxQkhx_TLIV4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1639993675</pqid></control><display><type>article</type><title>On the structure of the transition disk around TW Hydrae</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Menu, J. ; van Boekel, R. ; Henning, Th ; Chandler, C. J. ; Linz, H. ; Benisty, M. ; Lacour, S. ; Min, M. ; Waelkens, C. ; Andrews, S. M. ; Calvet, N. ; Carpenter, J. M. ; Corder, S. A. ; Deller, A. T. ; Greaves, J. S. ; Harris, R. J. ; Isella, A. ; Kwon, W. ; Lazio, J. ; Le Bouquin, J.-B. ; Ménard, F. ; Mundy, L. G. ; Pérez, L. M. ; Ricci, L. ; Sargent, A. I. ; Storm, S. ; Testi, L. ; Wilner, D. J.</creator><creatorcontrib>Menu, J. ; van Boekel, R. ; Henning, Th ; Chandler, C. J. ; Linz, H. ; Benisty, M. ; Lacour, S. ; Min, M. ; Waelkens, C. ; Andrews, S. M. ; Calvet, N. ; Carpenter, J. M. ; Corder, S. A. ; Deller, A. T. ; Greaves, J. S. ; Harris, R. J. ; Isella, A. ; Kwon, W. ; Lazio, J. ; Le Bouquin, J.-B. ; Ménard, F. ; Mundy, L. G. ; Pérez, L. M. ; Ricci, L. ; Sargent, A. I. ; Storm, S. ; Testi, L. ; Wilner, D. J.</creatorcontrib><description>Context. For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at different wavelengths has led to a variety of proposed disk structures. Rather than being inconsistent, the individual models might point to the different faces of physical processes going on in disks, such as dust growth and planet formation. Aims. Our aim is to investigate the structure of the transition disk again and to find to what extent we can reconcile apparent model differences. Methods. A large set of high-angular-resolution data was collected from near-infrared to centimeter wavelengths. We investigated the existing disk models and established a new self-consistent radiative-transfer model. A genetic fitting algorithm was used to automatize the parameter fitting, and uncertainties were investigated in a Bayesian framework. Results. Simple disk models with a vertical inner rim and a radially homogeneous dust composition from small to large grains cannot reproduce the combined data set. Two modifications are applied to this simple disk model: (1) the inner rim is smoothed by exponentially decreasing the surface density in the inner ~3 AU, and (2) the largest grains (&gt;100 μm) are concentrated towards the inner disk region. Both properties can be linked to fundamental processes that determine the evolution of protoplanetary disks: the shaping by a possible companion and the different regimes of dust-grain growth, respectively. Conclusions. The full interferometric data set from near-infrared to centimeter wavelengths requires a revision of existing models for the TW Hya disk. We present a new model that incorporates the characteristic structures of previous models but deviates in two key aspects: it does not have a sharp edge at 4 AU, and the surface density of large grains differs from that of smaller grains. This is the first successful radiative-transfer-based model for a full set of interferometric data.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/201322961</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Astrophysics ; Density ; Disks ; Dust ; Fittings ; Grains ; Interferometry ; Physics ; Planet formation ; protoplanetary disks ; stars: individual: TW Hya ; techniques: interferometric ; Wavelengths</subject><ispartof>Astronomy and astrophysics (Berlin), 2014-04, Vol.564, p.np-np</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-dd2cd60bdc623dd87f66e7309f8659aac56933bc362a66896ff0ba4a97e3d9d3</citedby><cites>FETCH-LOGICAL-c498t-dd2cd60bdc623dd87f66e7309f8659aac56933bc362a66896ff0ba4a97e3d9d3</cites><orcidid>0000-0002-1493-300X ; 0000-0002-3950-5386 ; 0000-0002-1637-7393 ; 0000-0001-8061-2207 ; 0000-0002-6948-0263 ; 0000-0002-7695-7605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,3729,27931,27932</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02547936$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Menu, J.</creatorcontrib><creatorcontrib>van Boekel, R.</creatorcontrib><creatorcontrib>Henning, Th</creatorcontrib><creatorcontrib>Chandler, C. J.</creatorcontrib><creatorcontrib>Linz, H.</creatorcontrib><creatorcontrib>Benisty, M.</creatorcontrib><creatorcontrib>Lacour, S.</creatorcontrib><creatorcontrib>Min, M.</creatorcontrib><creatorcontrib>Waelkens, C.</creatorcontrib><creatorcontrib>Andrews, S. M.</creatorcontrib><creatorcontrib>Calvet, N.</creatorcontrib><creatorcontrib>Carpenter, J. M.</creatorcontrib><creatorcontrib>Corder, S. A.</creatorcontrib><creatorcontrib>Deller, A. T.</creatorcontrib><creatorcontrib>Greaves, J. S.</creatorcontrib><creatorcontrib>Harris, R. J.</creatorcontrib><creatorcontrib>Isella, A.</creatorcontrib><creatorcontrib>Kwon, W.</creatorcontrib><creatorcontrib>Lazio, J.</creatorcontrib><creatorcontrib>Le Bouquin, J.-B.</creatorcontrib><creatorcontrib>Ménard, F.</creatorcontrib><creatorcontrib>Mundy, L. G.</creatorcontrib><creatorcontrib>Pérez, L. M.</creatorcontrib><creatorcontrib>Ricci, L.</creatorcontrib><creatorcontrib>Sargent, A. I.</creatorcontrib><creatorcontrib>Storm, S.</creatorcontrib><creatorcontrib>Testi, L.</creatorcontrib><creatorcontrib>Wilner, D. J.</creatorcontrib><title>On the structure of the transition disk around TW Hydrae</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at different wavelengths has led to a variety of proposed disk structures. Rather than being inconsistent, the individual models might point to the different faces of physical processes going on in disks, such as dust growth and planet formation. Aims. Our aim is to investigate the structure of the transition disk again and to find to what extent we can reconcile apparent model differences. Methods. A large set of high-angular-resolution data was collected from near-infrared to centimeter wavelengths. We investigated the existing disk models and established a new self-consistent radiative-transfer model. A genetic fitting algorithm was used to automatize the parameter fitting, and uncertainties were investigated in a Bayesian framework. Results. Simple disk models with a vertical inner rim and a radially homogeneous dust composition from small to large grains cannot reproduce the combined data set. Two modifications are applied to this simple disk model: (1) the inner rim is smoothed by exponentially decreasing the surface density in the inner ~3 AU, and (2) the largest grains (&gt;100 μm) are concentrated towards the inner disk region. Both properties can be linked to fundamental processes that determine the evolution of protoplanetary disks: the shaping by a possible companion and the different regimes of dust-grain growth, respectively. Conclusions. The full interferometric data set from near-infrared to centimeter wavelengths requires a revision of existing models for the TW Hya disk. We present a new model that incorporates the characteristic structures of previous models but deviates in two key aspects: it does not have a sharp edge at 4 AU, and the surface density of large grains differs from that of smaller grains. This is the first successful radiative-transfer-based model for a full set of interferometric data.</description><subject>Astrophysics</subject><subject>Density</subject><subject>Disks</subject><subject>Dust</subject><subject>Fittings</subject><subject>Grains</subject><subject>Interferometry</subject><subject>Physics</subject><subject>Planet formation</subject><subject>protoplanetary disks</subject><subject>stars: individual: TW Hya</subject><subject>techniques: interferometric</subject><subject>Wavelengths</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkLFOwzAQhi0EEqXwBCwZYQi1fcklZqsqIKBIMFTqaLmxo4amSbETRDdWXpMnISEoM9PpTt__6_QRcsnoDaMhm1FKAx8B2YxTBpwLZEdkwgLgPo0CPCaTkTglZ869ditnMUzI7XPlNRvjuca2WdNa49X576GxqnJFU9SVpwu39ZSt20p7y9X351dy0FaZc3KSq9KZi785Jcv7u-Ui8dPnh8fFPPWzQMSNrzXPNNK1zpCD1nGUI5oIqMhjDIVSWYgCYJ0BcoUYC8xzulaBEpEBLTRMyfVQu1Gl3Ntip-xB1qqQyTyV_Y3yMIgE4Dvr2KuB3dv6rTWukbvCZaYsVWXq1kmGYSclFhz_gYIQXWsUdigMaGZr56zJxzcYlb1_2duVvV05-u9S_pAqXGM-xoiyW4kRRKGM6UomVLCnlxQkhx_TLIV4</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Menu, J.</creator><creator>van Boekel, R.</creator><creator>Henning, Th</creator><creator>Chandler, C. J.</creator><creator>Linz, H.</creator><creator>Benisty, M.</creator><creator>Lacour, S.</creator><creator>Min, M.</creator><creator>Waelkens, C.</creator><creator>Andrews, S. M.</creator><creator>Calvet, N.</creator><creator>Carpenter, J. M.</creator><creator>Corder, S. A.</creator><creator>Deller, A. T.</creator><creator>Greaves, J. S.</creator><creator>Harris, R. J.</creator><creator>Isella, A.</creator><creator>Kwon, W.</creator><creator>Lazio, J.</creator><creator>Le Bouquin, J.-B.</creator><creator>Ménard, F.</creator><creator>Mundy, L. G.</creator><creator>Pérez, L. M.</creator><creator>Ricci, L.</creator><creator>Sargent, A. I.</creator><creator>Storm, S.</creator><creator>Testi, L.</creator><creator>Wilner, D. J.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1493-300X</orcidid><orcidid>https://orcid.org/0000-0002-3950-5386</orcidid><orcidid>https://orcid.org/0000-0002-1637-7393</orcidid><orcidid>https://orcid.org/0000-0001-8061-2207</orcidid><orcidid>https://orcid.org/0000-0002-6948-0263</orcidid><orcidid>https://orcid.org/0000-0002-7695-7605</orcidid></search><sort><creationdate>20140401</creationdate><title>On the structure of the transition disk around TW Hydrae</title><author>Menu, J. ; van Boekel, R. ; Henning, Th ; Chandler, C. J. ; Linz, H. ; Benisty, M. ; Lacour, S. ; Min, M. ; Waelkens, C. ; Andrews, S. M. ; Calvet, N. ; Carpenter, J. M. ; Corder, S. A. ; Deller, A. T. ; Greaves, J. S. ; Harris, R. J. ; Isella, A. ; Kwon, W. ; Lazio, J. ; Le Bouquin, J.-B. ; Ménard, F. ; Mundy, L. G. ; Pérez, L. M. ; Ricci, L. ; Sargent, A. I. ; Storm, S. ; Testi, L. ; Wilner, D. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-dd2cd60bdc623dd87f66e7309f8659aac56933bc362a66896ff0ba4a97e3d9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Astrophysics</topic><topic>Density</topic><topic>Disks</topic><topic>Dust</topic><topic>Fittings</topic><topic>Grains</topic><topic>Interferometry</topic><topic>Physics</topic><topic>Planet formation</topic><topic>protoplanetary disks</topic><topic>stars: individual: TW Hya</topic><topic>techniques: interferometric</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menu, J.</creatorcontrib><creatorcontrib>van Boekel, R.</creatorcontrib><creatorcontrib>Henning, Th</creatorcontrib><creatorcontrib>Chandler, C. J.</creatorcontrib><creatorcontrib>Linz, H.</creatorcontrib><creatorcontrib>Benisty, M.</creatorcontrib><creatorcontrib>Lacour, S.</creatorcontrib><creatorcontrib>Min, M.</creatorcontrib><creatorcontrib>Waelkens, C.</creatorcontrib><creatorcontrib>Andrews, S. M.</creatorcontrib><creatorcontrib>Calvet, N.</creatorcontrib><creatorcontrib>Carpenter, J. M.</creatorcontrib><creatorcontrib>Corder, S. A.</creatorcontrib><creatorcontrib>Deller, A. T.</creatorcontrib><creatorcontrib>Greaves, J. S.</creatorcontrib><creatorcontrib>Harris, R. J.</creatorcontrib><creatorcontrib>Isella, A.</creatorcontrib><creatorcontrib>Kwon, W.</creatorcontrib><creatorcontrib>Lazio, J.</creatorcontrib><creatorcontrib>Le Bouquin, J.-B.</creatorcontrib><creatorcontrib>Ménard, F.</creatorcontrib><creatorcontrib>Mundy, L. G.</creatorcontrib><creatorcontrib>Pérez, L. M.</creatorcontrib><creatorcontrib>Ricci, L.</creatorcontrib><creatorcontrib>Sargent, A. I.</creatorcontrib><creatorcontrib>Storm, S.</creatorcontrib><creatorcontrib>Testi, L.</creatorcontrib><creatorcontrib>Wilner, D. J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menu, J.</au><au>van Boekel, R.</au><au>Henning, Th</au><au>Chandler, C. J.</au><au>Linz, H.</au><au>Benisty, M.</au><au>Lacour, S.</au><au>Min, M.</au><au>Waelkens, C.</au><au>Andrews, S. M.</au><au>Calvet, N.</au><au>Carpenter, J. M.</au><au>Corder, S. A.</au><au>Deller, A. T.</au><au>Greaves, J. S.</au><au>Harris, R. J.</au><au>Isella, A.</au><au>Kwon, W.</au><au>Lazio, J.</au><au>Le Bouquin, J.-B.</au><au>Ménard, F.</au><au>Mundy, L. G.</au><au>Pérez, L. M.</au><au>Ricci, L.</au><au>Sargent, A. I.</au><au>Storm, S.</au><au>Testi, L.</au><au>Wilner, D. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the structure of the transition disk around TW Hydrae</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2014-04-01</date><risdate>2014</risdate><volume>564</volume><spage>np</spage><epage>np</epage><pages>np-np</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Context. For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at different wavelengths has led to a variety of proposed disk structures. Rather than being inconsistent, the individual models might point to the different faces of physical processes going on in disks, such as dust growth and planet formation. Aims. Our aim is to investigate the structure of the transition disk again and to find to what extent we can reconcile apparent model differences. Methods. A large set of high-angular-resolution data was collected from near-infrared to centimeter wavelengths. We investigated the existing disk models and established a new self-consistent radiative-transfer model. A genetic fitting algorithm was used to automatize the parameter fitting, and uncertainties were investigated in a Bayesian framework. Results. Simple disk models with a vertical inner rim and a radially homogeneous dust composition from small to large grains cannot reproduce the combined data set. Two modifications are applied to this simple disk model: (1) the inner rim is smoothed by exponentially decreasing the surface density in the inner ~3 AU, and (2) the largest grains (&gt;100 μm) are concentrated towards the inner disk region. Both properties can be linked to fundamental processes that determine the evolution of protoplanetary disks: the shaping by a possible companion and the different regimes of dust-grain growth, respectively. Conclusions. The full interferometric data set from near-infrared to centimeter wavelengths requires a revision of existing models for the TW Hya disk. We present a new model that incorporates the characteristic structures of previous models but deviates in two key aspects: it does not have a sharp edge at 4 AU, and the surface density of large grains differs from that of smaller grains. This is the first successful radiative-transfer-based model for a full set of interferometric data.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/201322961</doi><orcidid>https://orcid.org/0000-0002-1493-300X</orcidid><orcidid>https://orcid.org/0000-0002-3950-5386</orcidid><orcidid>https://orcid.org/0000-0002-1637-7393</orcidid><orcidid>https://orcid.org/0000-0001-8061-2207</orcidid><orcidid>https://orcid.org/0000-0002-6948-0263</orcidid><orcidid>https://orcid.org/0000-0002-7695-7605</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2014-04, Vol.564, p.np-np
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_hal_02547936v1
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Astrophysics
Density
Disks
Dust
Fittings
Grains
Interferometry
Physics
Planet formation
protoplanetary disks
stars: individual: TW Hya
techniques: interferometric
Wavelengths
title On the structure of the transition disk around TW Hydrae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20structure%20of%20the%20transition%20disk%20around%20TW%E2%80%89Hydrae&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Menu,%20J.&rft.date=2014-04-01&rft.volume=564&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/201322961&rft_dat=%3Cproquest_hal_p%3E1651438926%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1639993675&rft_id=info:pmid/&rfr_iscdi=true