Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor
Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential...
Gespeichert in:
Veröffentlicht in: | Analytical and bioanalytical chemistry 2016-12, Vol.408 (30), p.8761-8770 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8770 |
---|---|
container_issue | 30 |
container_start_page | 8761 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 408 |
creator | Affi, Mahmoud Solliec, Camille Legentilhomme, Patrick Comiti, Jacques Legrand, Jack Jouanneau, Sulivan Thouand, Gérald |
description | Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a general purpose model to understand, anticipate, or predict the dysfunction of a biosensor using immobilized bioluminescent bioreporter in a matrix. |
doi_str_mv | 10.1007/s00216-016-9490-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02546445v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472297385</galeid><sourcerecordid>A472297385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-a1ca79f613c588b7cc26ae05629932cf530c066a424fc4d884829b254cfff2b3</originalsourceid><addsrcrecordid>eNqNkk1r3DAQhk1paNK0P6CXYuilOTiVRh-Wj0tok8KSQsldyLK0UbClrWQH8u87i9OlFApBCA0zzzsMo7eqPlBySQlpvxRCgMqG4O14Rxr2qjqjkqoGpCCvjzGH0-ptKQ-EUKGofFOdQks4EQzOqp-3y-RysGaspzS4McRdnXw937t6eIpmCrbOruxTLO6QN3Uf0rhMIbpiXZzr3tgZ9SjHQnGxpPyuOvFmLO7983te3X37end102x_XH-_2mwbK7iaG0OtaTsvKbNCqb61FqRxREjoOgbWC0YskdJw4N7yQSmuoOtBcOu9h56dVxdr23sz6n0Ok8lPOpmgbzZbfcgRZCXn4pEi-3ll9zn9WlyZ9RRw_nE00aWlaKoUrhI4tC9ApWKMCfUSFKRsKQeJ6Kd_0Ie05IjrQYpzxalUHKnLldqZ0ekQfZqzsXgGhx-RovMB8xveAnQtUwIFdBXYnErJzh8XQYk-WESvFtFoEX2wiGao-fg8ytJPbjgq_ngCAViBgqW4c_mvWf_b9Teun8NA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844841684</pqid></control><display><type>article</type><title>Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Affi, Mahmoud ; Solliec, Camille ; Legentilhomme, Patrick ; Comiti, Jacques ; Legrand, Jack ; Jouanneau, Sulivan ; Thouand, Gérald</creator><creatorcontrib>Affi, Mahmoud ; Solliec, Camille ; Legentilhomme, Patrick ; Comiti, Jacques ; Legrand, Jack ; Jouanneau, Sulivan ; Thouand, Gérald</creatorcontrib><description>Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a general purpose model to understand, anticipate, or predict the dysfunction of a biosensor using immobilized bioluminescent bioreporter in a matrix.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-016-9490-3</identifier><identifier>PMID: 27040532</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aliivibrio fischeri - chemistry ; Aliivibrio fischeri - enzymology ; Analytical Chemistry ; Bacteria ; Biochemistry ; Biofilms ; Biofilms - drug effects ; Biofilms - growth & development ; Bioluminescence ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; Cadmium ; Cadmium - analysis ; Cells, Immobilized ; Characterization and Evaluation of Materials ; Chemical and Process Engineering ; Chemistry ; Chemistry and Materials Science ; Computer Simulation ; Consumption ; Diffusion ; Engineering Sciences ; Environmental Monitoring - instrumentation ; Escherichia coli - drug effects ; Escherichia coli - enzymology ; Escherichia coli - growth & development ; Food Science ; Gene Expression ; Genes, Reporter ; Growth models ; Heavy metals ; Highlights of Analytical Chemical Luminescence ; Laboratory Medicine ; Luciferases - genetics ; Luciferases - metabolism ; Luminescent Measurements - statistics & numerical data ; Mathematical models ; Models, Biological ; Monitoring/Environmental Analysis ; Nutrients ; Oxygen - chemistry ; Pollutants ; Properties ; Research Paper ; Sepharose ; Transgenes ; Water management ; Water Pollutants, Chemical - analysis ; Water quality</subject><ispartof>Analytical and bioanalytical chemistry, 2016-12, Vol.408 (30), p.8761-8770</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Analytical and Bioanalytical Chemistry is a copyright of Springer, 2016.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-a1ca79f613c588b7cc26ae05629932cf530c066a424fc4d884829b254cfff2b3</citedby><cites>FETCH-LOGICAL-c548t-a1ca79f613c588b7cc26ae05629932cf530c066a424fc4d884829b254cfff2b3</cites><orcidid>0000-0001-7288-6099 ; 0000-0001-9028-7575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-016-9490-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-016-9490-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27040532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02546445$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Affi, Mahmoud</creatorcontrib><creatorcontrib>Solliec, Camille</creatorcontrib><creatorcontrib>Legentilhomme, Patrick</creatorcontrib><creatorcontrib>Comiti, Jacques</creatorcontrib><creatorcontrib>Legrand, Jack</creatorcontrib><creatorcontrib>Jouanneau, Sulivan</creatorcontrib><creatorcontrib>Thouand, Gérald</creatorcontrib><title>Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a general purpose model to understand, anticipate, or predict the dysfunction of a biosensor using immobilized bioluminescent bioreporter in a matrix.</description><subject>Aliivibrio fischeri - chemistry</subject><subject>Aliivibrio fischeri - enzymology</subject><subject>Analytical Chemistry</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Biofilms</subject><subject>Biofilms - drug effects</subject><subject>Biofilms - growth & development</subject><subject>Bioluminescence</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Cadmium</subject><subject>Cadmium - analysis</subject><subject>Cells, Immobilized</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical and Process Engineering</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Simulation</subject><subject>Consumption</subject><subject>Diffusion</subject><subject>Engineering Sciences</subject><subject>Environmental Monitoring - instrumentation</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - growth & development</subject><subject>Food Science</subject><subject>Gene Expression</subject><subject>Genes, Reporter</subject><subject>Growth models</subject><subject>Heavy metals</subject><subject>Highlights of Analytical Chemical Luminescence</subject><subject>Laboratory Medicine</subject><subject>Luciferases - genetics</subject><subject>Luciferases - metabolism</subject><subject>Luminescent Measurements - statistics & numerical data</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nutrients</subject><subject>Oxygen - chemistry</subject><subject>Pollutants</subject><subject>Properties</subject><subject>Research Paper</subject><subject>Sepharose</subject><subject>Transgenes</subject><subject>Water management</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water quality</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk1r3DAQhk1paNK0P6CXYuilOTiVRh-Wj0tok8KSQsldyLK0UbClrWQH8u87i9OlFApBCA0zzzsMo7eqPlBySQlpvxRCgMqG4O14Rxr2qjqjkqoGpCCvjzGH0-ptKQ-EUKGofFOdQks4EQzOqp-3y-RysGaspzS4McRdnXw937t6eIpmCrbOruxTLO6QN3Uf0rhMIbpiXZzr3tgZ9SjHQnGxpPyuOvFmLO7983te3X37end102x_XH-_2mwbK7iaG0OtaTsvKbNCqb61FqRxREjoOgbWC0YskdJw4N7yQSmuoOtBcOu9h56dVxdr23sz6n0Ok8lPOpmgbzZbfcgRZCXn4pEi-3ll9zn9WlyZ9RRw_nE00aWlaKoUrhI4tC9ApWKMCfUSFKRsKQeJ6Kd_0Ie05IjrQYpzxalUHKnLldqZ0ekQfZqzsXgGhx-RovMB8xveAnQtUwIFdBXYnErJzh8XQYk-WESvFtFoEX2wiGao-fg8ytJPbjgq_ngCAViBgqW4c_mvWf_b9Teun8NA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Affi, Mahmoud</creator><creator>Solliec, Camille</creator><creator>Legentilhomme, Patrick</creator><creator>Comiti, Jacques</creator><creator>Legrand, Jack</creator><creator>Jouanneau, Sulivan</creator><creator>Thouand, Gérald</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7288-6099</orcidid><orcidid>https://orcid.org/0000-0001-9028-7575</orcidid></search><sort><creationdate>20161201</creationdate><title>Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor</title><author>Affi, Mahmoud ; Solliec, Camille ; Legentilhomme, Patrick ; Comiti, Jacques ; Legrand, Jack ; Jouanneau, Sulivan ; Thouand, Gérald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-a1ca79f613c588b7cc26ae05629932cf530c066a424fc4d884829b254cfff2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aliivibrio fischeri - chemistry</topic><topic>Aliivibrio fischeri - enzymology</topic><topic>Analytical Chemistry</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Biofilms</topic><topic>Biofilms - drug effects</topic><topic>Biofilms - growth & development</topic><topic>Bioluminescence</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Cadmium</topic><topic>Cadmium - analysis</topic><topic>Cells, Immobilized</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical and Process Engineering</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Simulation</topic><topic>Consumption</topic><topic>Diffusion</topic><topic>Engineering Sciences</topic><topic>Environmental Monitoring - instrumentation</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - growth & development</topic><topic>Food Science</topic><topic>Gene Expression</topic><topic>Genes, Reporter</topic><topic>Growth models</topic><topic>Heavy metals</topic><topic>Highlights of Analytical Chemical Luminescence</topic><topic>Laboratory Medicine</topic><topic>Luciferases - genetics</topic><topic>Luciferases - metabolism</topic><topic>Luminescent Measurements - statistics & numerical data</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nutrients</topic><topic>Oxygen - chemistry</topic><topic>Pollutants</topic><topic>Properties</topic><topic>Research Paper</topic><topic>Sepharose</topic><topic>Transgenes</topic><topic>Water management</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Affi, Mahmoud</creatorcontrib><creatorcontrib>Solliec, Camille</creatorcontrib><creatorcontrib>Legentilhomme, Patrick</creatorcontrib><creatorcontrib>Comiti, Jacques</creatorcontrib><creatorcontrib>Legrand, Jack</creatorcontrib><creatorcontrib>Jouanneau, Sulivan</creatorcontrib><creatorcontrib>Thouand, Gérald</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Affi, Mahmoud</au><au>Solliec, Camille</au><au>Legentilhomme, Patrick</au><au>Comiti, Jacques</au><au>Legrand, Jack</au><au>Jouanneau, Sulivan</au><au>Thouand, Gérald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>408</volume><issue>30</issue><spage>8761</spage><epage>8770</epage><pages>8761-8770</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a general purpose model to understand, anticipate, or predict the dysfunction of a biosensor using immobilized bioluminescent bioreporter in a matrix.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27040532</pmid><doi>10.1007/s00216-016-9490-3</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7288-6099</orcidid><orcidid>https://orcid.org/0000-0001-9028-7575</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2016-12, Vol.408 (30), p.8761-8770 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02546445v1 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Aliivibrio fischeri - chemistry Aliivibrio fischeri - enzymology Analytical Chemistry Bacteria Biochemistry Biofilms Biofilms - drug effects Biofilms - growth & development Bioluminescence Biosensing Techniques - instrumentation Biosensing Techniques - methods Biosensors Cadmium Cadmium - analysis Cells, Immobilized Characterization and Evaluation of Materials Chemical and Process Engineering Chemistry Chemistry and Materials Science Computer Simulation Consumption Diffusion Engineering Sciences Environmental Monitoring - instrumentation Escherichia coli - drug effects Escherichia coli - enzymology Escherichia coli - growth & development Food Science Gene Expression Genes, Reporter Growth models Heavy metals Highlights of Analytical Chemical Luminescence Laboratory Medicine Luciferases - genetics Luciferases - metabolism Luminescent Measurements - statistics & numerical data Mathematical models Models, Biological Monitoring/Environmental Analysis Nutrients Oxygen - chemistry Pollutants Properties Research Paper Sepharose Transgenes Water management Water Pollutants, Chemical - analysis Water quality |
title | Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20of%20the%20dynamic%20response%20of%20a%20bioluminescent%20bacterial%20biosensor&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Affi,%20Mahmoud&rft.date=2016-12-01&rft.volume=408&rft.issue=30&rft.spage=8761&rft.epage=8770&rft.pages=8761-8770&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-016-9490-3&rft_dat=%3Cgale_hal_p%3EA472297385%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844841684&rft_id=info:pmid/27040532&rft_galeid=A472297385&rfr_iscdi=true |