Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor

Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2016-12, Vol.408 (30), p.8761-8770
Hauptverfasser: Affi, Mahmoud, Solliec, Camille, Legentilhomme, Patrick, Comiti, Jacques, Legrand, Jack, Jouanneau, Sulivan, Thouand, Gérald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8770
container_issue 30
container_start_page 8761
container_title Analytical and bioanalytical chemistry
container_volume 408
creator Affi, Mahmoud
Solliec, Camille
Legentilhomme, Patrick
Comiti, Jacques
Legrand, Jack
Jouanneau, Sulivan
Thouand, Gérald
description Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a general purpose model to understand, anticipate, or predict the dysfunction of a biosensor using immobilized bioluminescent bioreporter in a matrix.
doi_str_mv 10.1007/s00216-016-9490-3
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02546445v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A472297385</galeid><sourcerecordid>A472297385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-a1ca79f613c588b7cc26ae05629932cf530c066a424fc4d884829b254cfff2b3</originalsourceid><addsrcrecordid>eNqNkk1r3DAQhk1paNK0P6CXYuilOTiVRh-Wj0tok8KSQsldyLK0UbClrWQH8u87i9OlFApBCA0zzzsMo7eqPlBySQlpvxRCgMqG4O14Rxr2qjqjkqoGpCCvjzGH0-ptKQ-EUKGofFOdQks4EQzOqp-3y-RysGaspzS4McRdnXw937t6eIpmCrbOruxTLO6QN3Uf0rhMIbpiXZzr3tgZ9SjHQnGxpPyuOvFmLO7983te3X37end102x_XH-_2mwbK7iaG0OtaTsvKbNCqb61FqRxREjoOgbWC0YskdJw4N7yQSmuoOtBcOu9h56dVxdr23sz6n0Ok8lPOpmgbzZbfcgRZCXn4pEi-3ll9zn9WlyZ9RRw_nE00aWlaKoUrhI4tC9ApWKMCfUSFKRsKQeJ6Kd_0Ie05IjrQYpzxalUHKnLldqZ0ekQfZqzsXgGhx-RovMB8xveAnQtUwIFdBXYnErJzh8XQYk-WESvFtFoEX2wiGao-fg8ytJPbjgq_ngCAViBgqW4c_mvWf_b9Teun8NA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844841684</pqid></control><display><type>article</type><title>Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Affi, Mahmoud ; Solliec, Camille ; Legentilhomme, Patrick ; Comiti, Jacques ; Legrand, Jack ; Jouanneau, Sulivan ; Thouand, Gérald</creator><creatorcontrib>Affi, Mahmoud ; Solliec, Camille ; Legentilhomme, Patrick ; Comiti, Jacques ; Legrand, Jack ; Jouanneau, Sulivan ; Thouand, Gérald</creatorcontrib><description>Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a general purpose model to understand, anticipate, or predict the dysfunction of a biosensor using immobilized bioluminescent bioreporter in a matrix.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-016-9490-3</identifier><identifier>PMID: 27040532</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aliivibrio fischeri - chemistry ; Aliivibrio fischeri - enzymology ; Analytical Chemistry ; Bacteria ; Biochemistry ; Biofilms ; Biofilms - drug effects ; Biofilms - growth &amp; development ; Bioluminescence ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; Cadmium ; Cadmium - analysis ; Cells, Immobilized ; Characterization and Evaluation of Materials ; Chemical and Process Engineering ; Chemistry ; Chemistry and Materials Science ; Computer Simulation ; Consumption ; Diffusion ; Engineering Sciences ; Environmental Monitoring - instrumentation ; Escherichia coli - drug effects ; Escherichia coli - enzymology ; Escherichia coli - growth &amp; development ; Food Science ; Gene Expression ; Genes, Reporter ; Growth models ; Heavy metals ; Highlights of Analytical Chemical Luminescence ; Laboratory Medicine ; Luciferases - genetics ; Luciferases - metabolism ; Luminescent Measurements - statistics &amp; numerical data ; Mathematical models ; Models, Biological ; Monitoring/Environmental Analysis ; Nutrients ; Oxygen - chemistry ; Pollutants ; Properties ; Research Paper ; Sepharose ; Transgenes ; Water management ; Water Pollutants, Chemical - analysis ; Water quality</subject><ispartof>Analytical and bioanalytical chemistry, 2016-12, Vol.408 (30), p.8761-8770</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Analytical and Bioanalytical Chemistry is a copyright of Springer, 2016.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-a1ca79f613c588b7cc26ae05629932cf530c066a424fc4d884829b254cfff2b3</citedby><cites>FETCH-LOGICAL-c548t-a1ca79f613c588b7cc26ae05629932cf530c066a424fc4d884829b254cfff2b3</cites><orcidid>0000-0001-7288-6099 ; 0000-0001-9028-7575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00216-016-9490-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00216-016-9490-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27040532$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02546445$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Affi, Mahmoud</creatorcontrib><creatorcontrib>Solliec, Camille</creatorcontrib><creatorcontrib>Legentilhomme, Patrick</creatorcontrib><creatorcontrib>Comiti, Jacques</creatorcontrib><creatorcontrib>Legrand, Jack</creatorcontrib><creatorcontrib>Jouanneau, Sulivan</creatorcontrib><creatorcontrib>Thouand, Gérald</creatorcontrib><title>Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a general purpose model to understand, anticipate, or predict the dysfunction of a biosensor using immobilized bioluminescent bioreporter in a matrix.</description><subject>Aliivibrio fischeri - chemistry</subject><subject>Aliivibrio fischeri - enzymology</subject><subject>Analytical Chemistry</subject><subject>Bacteria</subject><subject>Biochemistry</subject><subject>Biofilms</subject><subject>Biofilms - drug effects</subject><subject>Biofilms - growth &amp; development</subject><subject>Bioluminescence</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Cadmium</subject><subject>Cadmium - analysis</subject><subject>Cells, Immobilized</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical and Process Engineering</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer Simulation</subject><subject>Consumption</subject><subject>Diffusion</subject><subject>Engineering Sciences</subject><subject>Environmental Monitoring - instrumentation</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Food Science</subject><subject>Gene Expression</subject><subject>Genes, Reporter</subject><subject>Growth models</subject><subject>Heavy metals</subject><subject>Highlights of Analytical Chemical Luminescence</subject><subject>Laboratory Medicine</subject><subject>Luciferases - genetics</subject><subject>Luciferases - metabolism</subject><subject>Luminescent Measurements - statistics &amp; numerical data</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Monitoring/Environmental Analysis</subject><subject>Nutrients</subject><subject>Oxygen - chemistry</subject><subject>Pollutants</subject><subject>Properties</subject><subject>Research Paper</subject><subject>Sepharose</subject><subject>Transgenes</subject><subject>Water management</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water quality</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkk1r3DAQhk1paNK0P6CXYuilOTiVRh-Wj0tok8KSQsldyLK0UbClrWQH8u87i9OlFApBCA0zzzsMo7eqPlBySQlpvxRCgMqG4O14Rxr2qjqjkqoGpCCvjzGH0-ptKQ-EUKGofFOdQks4EQzOqp-3y-RysGaspzS4McRdnXw937t6eIpmCrbOruxTLO6QN3Uf0rhMIbpiXZzr3tgZ9SjHQnGxpPyuOvFmLO7983te3X37end102x_XH-_2mwbK7iaG0OtaTsvKbNCqb61FqRxREjoOgbWC0YskdJw4N7yQSmuoOtBcOu9h56dVxdr23sz6n0Ok8lPOpmgbzZbfcgRZCXn4pEi-3ll9zn9WlyZ9RRw_nE00aWlaKoUrhI4tC9ApWKMCfUSFKRsKQeJ6Kd_0Ie05IjrQYpzxalUHKnLldqZ0ekQfZqzsXgGhx-RovMB8xveAnQtUwIFdBXYnErJzh8XQYk-WESvFtFoEX2wiGao-fg8ytJPbjgq_ngCAViBgqW4c_mvWf_b9Teun8NA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Affi, Mahmoud</creator><creator>Solliec, Camille</creator><creator>Legentilhomme, Patrick</creator><creator>Comiti, Jacques</creator><creator>Legrand, Jack</creator><creator>Jouanneau, Sulivan</creator><creator>Thouand, Gérald</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7288-6099</orcidid><orcidid>https://orcid.org/0000-0001-9028-7575</orcidid></search><sort><creationdate>20161201</creationdate><title>Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor</title><author>Affi, Mahmoud ; Solliec, Camille ; Legentilhomme, Patrick ; Comiti, Jacques ; Legrand, Jack ; Jouanneau, Sulivan ; Thouand, Gérald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-a1ca79f613c588b7cc26ae05629932cf530c066a424fc4d884829b254cfff2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aliivibrio fischeri - chemistry</topic><topic>Aliivibrio fischeri - enzymology</topic><topic>Analytical Chemistry</topic><topic>Bacteria</topic><topic>Biochemistry</topic><topic>Biofilms</topic><topic>Biofilms - drug effects</topic><topic>Biofilms - growth &amp; development</topic><topic>Bioluminescence</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Cadmium</topic><topic>Cadmium - analysis</topic><topic>Cells, Immobilized</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical and Process Engineering</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer Simulation</topic><topic>Consumption</topic><topic>Diffusion</topic><topic>Engineering Sciences</topic><topic>Environmental Monitoring - instrumentation</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Food Science</topic><topic>Gene Expression</topic><topic>Genes, Reporter</topic><topic>Growth models</topic><topic>Heavy metals</topic><topic>Highlights of Analytical Chemical Luminescence</topic><topic>Laboratory Medicine</topic><topic>Luciferases - genetics</topic><topic>Luciferases - metabolism</topic><topic>Luminescent Measurements - statistics &amp; numerical data</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Monitoring/Environmental Analysis</topic><topic>Nutrients</topic><topic>Oxygen - chemistry</topic><topic>Pollutants</topic><topic>Properties</topic><topic>Research Paper</topic><topic>Sepharose</topic><topic>Transgenes</topic><topic>Water management</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Affi, Mahmoud</creatorcontrib><creatorcontrib>Solliec, Camille</creatorcontrib><creatorcontrib>Legentilhomme, Patrick</creatorcontrib><creatorcontrib>Comiti, Jacques</creatorcontrib><creatorcontrib>Legrand, Jack</creatorcontrib><creatorcontrib>Jouanneau, Sulivan</creatorcontrib><creatorcontrib>Thouand, Gérald</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Affi, Mahmoud</au><au>Solliec, Camille</au><au>Legentilhomme, Patrick</au><au>Comiti, Jacques</au><au>Legrand, Jack</au><au>Jouanneau, Sulivan</au><au>Thouand, Gérald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>408</volume><issue>30</issue><spage>8761</spage><epage>8770</epage><pages>8761-8770</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a general purpose model to understand, anticipate, or predict the dysfunction of a biosensor using immobilized bioluminescent bioreporter in a matrix.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>27040532</pmid><doi>10.1007/s00216-016-9490-3</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7288-6099</orcidid><orcidid>https://orcid.org/0000-0001-9028-7575</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2016-12, Vol.408 (30), p.8761-8770
issn 1618-2642
1618-2650
language eng
recordid cdi_hal_primary_oai_HAL_hal_02546445v1
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Aliivibrio fischeri - chemistry
Aliivibrio fischeri - enzymology
Analytical Chemistry
Bacteria
Biochemistry
Biofilms
Biofilms - drug effects
Biofilms - growth & development
Bioluminescence
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Biosensors
Cadmium
Cadmium - analysis
Cells, Immobilized
Characterization and Evaluation of Materials
Chemical and Process Engineering
Chemistry
Chemistry and Materials Science
Computer Simulation
Consumption
Diffusion
Engineering Sciences
Environmental Monitoring - instrumentation
Escherichia coli - drug effects
Escherichia coli - enzymology
Escherichia coli - growth & development
Food Science
Gene Expression
Genes, Reporter
Growth models
Heavy metals
Highlights of Analytical Chemical Luminescence
Laboratory Medicine
Luciferases - genetics
Luciferases - metabolism
Luminescent Measurements - statistics & numerical data
Mathematical models
Models, Biological
Monitoring/Environmental Analysis
Nutrients
Oxygen - chemistry
Pollutants
Properties
Research Paper
Sepharose
Transgenes
Water management
Water Pollutants, Chemical - analysis
Water quality
title Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20of%20the%20dynamic%20response%20of%20a%20bioluminescent%20bacterial%20biosensor&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Affi,%20Mahmoud&rft.date=2016-12-01&rft.volume=408&rft.issue=30&rft.spage=8761&rft.epage=8770&rft.pages=8761-8770&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-016-9490-3&rft_dat=%3Cgale_hal_p%3EA472297385%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844841684&rft_id=info:pmid/27040532&rft_galeid=A472297385&rfr_iscdi=true