Non Monotonous Product Distribution Dependence on Pt/γ‐Al2O3−Cl Catalysts Formulation in n‐Heptane Reforming
The synthesis of 19 carefully selected Pt/γ‐Al2O3−Cl formulations was followed by high‐throughput catalytic testing in order to unravel the effect of an active phase formulation change on n‐heptane reforming performances. Pt/γ‐Al2O3−Cl catalysts were prepared with different Pt (0.3–1 %wt) and Cl (0....
Gespeichert in:
Veröffentlicht in: | ChemCatChem 2020-04, Vol.12 (8), p.2262-2270 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2270 |
---|---|
container_issue | 8 |
container_start_page | 2262 |
container_title | ChemCatChem |
container_volume | 12 |
creator | Said‐Aizpuru, Olivier Batista, Ana T. F. Bouchy, Christophe Petrazzuoli, Vittorio Allain, Florent Diehl, Fabrice Farrusseng, David Morfin, Franck Joly, Jean‐François Dandeu, Aurélie |
description | The synthesis of 19 carefully selected Pt/γ‐Al2O3−Cl formulations was followed by high‐throughput catalytic testing in order to unravel the effect of an active phase formulation change on n‐heptane reforming performances. Pt/γ‐Al2O3−Cl catalysts were prepared with different Pt (0.3–1 %wt) and Cl (0.1–1.4 %wt) contents and using two γ‐Al2O3 supports so that both sites concentrations and sites locations at the crystallite surface vary among the catalyst pool. Catalytic tests were conducted in mild conditions for a comparison of catalysts in kinetic regime. Results show that Pt and Cl concentrations control the competition between hydroisomerisation, hydrogenolysis and hydrocracking pathways. Aromatisation, on the contrary, is poorly affected by formulation changes. Non‐monotonous trends linking Pt/Cl ratio to isomerisation selectivity are found for both γ‐Al2O3 supports. This study provides new insights for the description of bi‐functional transformations in catalytic naphtha reforming.
n‐Heptane reforming: Catalytic tests were carried on in order to unravel the effect of an active phase formulation change on n‐heptane reforming performances Results show that with Pt/γ‐Al2O3−Cl systems, Pt and Cl concentrations control the competition between hydroisomerisation, hydrogenolysis and hydrocracking pathways. Similar non‐monotonous trends linking Pt/Cl ratio to isomerisation selectivity are found for two γ‐Al2O3 supports. This study provides hints for the description of bi‐functional transformations in catalytic naphtha reforming. |
doi_str_mv | 10.1002/cctc.201902260 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02544492v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2394126257</sourcerecordid><originalsourceid>FETCH-LOGICAL-h3070-3fb44d34fc5861cc2a2c6ea44fb716279e979a4e96d58601a1359d2ef7c6e8323</originalsourceid><addsrcrecordid>eNo9kb9OwzAQxiMEEqWwMkdiYmjrf7HjsUopRSq0QmW2XMehqVInxA6oGyMj4lV4Dx6iT4JLUYbT3Xf3u9NJXxBcQtCHAKCBUk71EYAcIETBUdCBMWU9HHN-3NYxOA3OrF0DQDlmUSewD6UJ70tTOh-NDed1mTbKhaPcujpfNi7385GutEm1UTr0au4GP9-7989hgWZ49_GVFGEinSy21tlwXNabppB_a7kJjecmunLS6PBRZ36Ym-fz4CSThdUX_7kbPI1vFsmkN53d3iXDaW-FAQM9nC0JSTHJVBRTqBSSSFEtCcmWDFLEuOaMS6I5TT0AoIQ44inSGfNYjBHuBteHuytZiKrON7LeilLmYjKcin0PoIgQwtEr9OzVga3q8qXR1ol12dTGvycQ5gQiiiLmKX6g3vJCb9ubEIi9A2LvgGgdEEmySFqFfwEKYn-V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394126257</pqid></control><display><type>article</type><title>Non Monotonous Product Distribution Dependence on Pt/γ‐Al2O3−Cl Catalysts Formulation in n‐Heptane Reforming</title><source>Wiley-Blackwell Journals</source><creator>Said‐Aizpuru, Olivier ; Batista, Ana T. F. ; Bouchy, Christophe ; Petrazzuoli, Vittorio ; Allain, Florent ; Diehl, Fabrice ; Farrusseng, David ; Morfin, Franck ; Joly, Jean‐François ; Dandeu, Aurélie</creator><creatorcontrib>Said‐Aizpuru, Olivier ; Batista, Ana T. F. ; Bouchy, Christophe ; Petrazzuoli, Vittorio ; Allain, Florent ; Diehl, Fabrice ; Farrusseng, David ; Morfin, Franck ; Joly, Jean‐François ; Dandeu, Aurélie</creatorcontrib><description>The synthesis of 19 carefully selected Pt/γ‐Al2O3−Cl formulations was followed by high‐throughput catalytic testing in order to unravel the effect of an active phase formulation change on n‐heptane reforming performances. Pt/γ‐Al2O3−Cl catalysts were prepared with different Pt (0.3–1 %wt) and Cl (0.1–1.4 %wt) contents and using two γ‐Al2O3 supports so that both sites concentrations and sites locations at the crystallite surface vary among the catalyst pool. Catalytic tests were conducted in mild conditions for a comparison of catalysts in kinetic regime. Results show that Pt and Cl concentrations control the competition between hydroisomerisation, hydrogenolysis and hydrocracking pathways. Aromatisation, on the contrary, is poorly affected by formulation changes. Non‐monotonous trends linking Pt/Cl ratio to isomerisation selectivity are found for both γ‐Al2O3 supports. This study provides new insights for the description of bi‐functional transformations in catalytic naphtha reforming.
n‐Heptane reforming: Catalytic tests were carried on in order to unravel the effect of an active phase formulation change on n‐heptane reforming performances Results show that with Pt/γ‐Al2O3−Cl systems, Pt and Cl concentrations control the competition between hydroisomerisation, hydrogenolysis and hydrocracking pathways. Similar non‐monotonous trends linking Pt/Cl ratio to isomerisation selectivity are found for two γ‐Al2O3 supports. This study provides hints for the description of bi‐functional transformations in catalytic naphtha reforming.</description><identifier>ISSN: 1867-3880</identifier><identifier>ISSN: 1867-3899</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201902260</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; bi-functional catalysis ; Catalysis ; Catalysts ; Chemical Sciences ; Crystallites ; Environment and Society ; Environmental Sciences ; Heptanes ; Hydrocracking ; Hydrogenolysis ; Isomerization ; n-heptane reforming ; Naphtha ; Pt/γ-Al2O3−Cl ; Reforming ; Selectivity ; selectivity descriptor</subject><ispartof>ChemCatChem, 2020-04, Vol.12 (8), p.2262-2270</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5347-6550 ; 0000-0003-3272-708X ; 0000-0002-9093-4143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.201902260$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.201902260$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02544492$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Said‐Aizpuru, Olivier</creatorcontrib><creatorcontrib>Batista, Ana T. F.</creatorcontrib><creatorcontrib>Bouchy, Christophe</creatorcontrib><creatorcontrib>Petrazzuoli, Vittorio</creatorcontrib><creatorcontrib>Allain, Florent</creatorcontrib><creatorcontrib>Diehl, Fabrice</creatorcontrib><creatorcontrib>Farrusseng, David</creatorcontrib><creatorcontrib>Morfin, Franck</creatorcontrib><creatorcontrib>Joly, Jean‐François</creatorcontrib><creatorcontrib>Dandeu, Aurélie</creatorcontrib><title>Non Monotonous Product Distribution Dependence on Pt/γ‐Al2O3−Cl Catalysts Formulation in n‐Heptane Reforming</title><title>ChemCatChem</title><description>The synthesis of 19 carefully selected Pt/γ‐Al2O3−Cl formulations was followed by high‐throughput catalytic testing in order to unravel the effect of an active phase formulation change on n‐heptane reforming performances. Pt/γ‐Al2O3−Cl catalysts were prepared with different Pt (0.3–1 %wt) and Cl (0.1–1.4 %wt) contents and using two γ‐Al2O3 supports so that both sites concentrations and sites locations at the crystallite surface vary among the catalyst pool. Catalytic tests were conducted in mild conditions for a comparison of catalysts in kinetic regime. Results show that Pt and Cl concentrations control the competition between hydroisomerisation, hydrogenolysis and hydrocracking pathways. Aromatisation, on the contrary, is poorly affected by formulation changes. Non‐monotonous trends linking Pt/Cl ratio to isomerisation selectivity are found for both γ‐Al2O3 supports. This study provides new insights for the description of bi‐functional transformations in catalytic naphtha reforming.
n‐Heptane reforming: Catalytic tests were carried on in order to unravel the effect of an active phase formulation change on n‐heptane reforming performances Results show that with Pt/γ‐Al2O3−Cl systems, Pt and Cl concentrations control the competition between hydroisomerisation, hydrogenolysis and hydrocracking pathways. Similar non‐monotonous trends linking Pt/Cl ratio to isomerisation selectivity are found for two γ‐Al2O3 supports. This study provides hints for the description of bi‐functional transformations in catalytic naphtha reforming.</description><subject>Aluminum oxide</subject><subject>bi-functional catalysis</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical Sciences</subject><subject>Crystallites</subject><subject>Environment and Society</subject><subject>Environmental Sciences</subject><subject>Heptanes</subject><subject>Hydrocracking</subject><subject>Hydrogenolysis</subject><subject>Isomerization</subject><subject>n-heptane reforming</subject><subject>Naphtha</subject><subject>Pt/γ-Al2O3−Cl</subject><subject>Reforming</subject><subject>Selectivity</subject><subject>selectivity descriptor</subject><issn>1867-3880</issn><issn>1867-3899</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kb9OwzAQxiMEEqWwMkdiYmjrf7HjsUopRSq0QmW2XMehqVInxA6oGyMj4lV4Dx6iT4JLUYbT3Xf3u9NJXxBcQtCHAKCBUk71EYAcIETBUdCBMWU9HHN-3NYxOA3OrF0DQDlmUSewD6UJ70tTOh-NDed1mTbKhaPcujpfNi7385GutEm1UTr0au4GP9-7989hgWZ49_GVFGEinSy21tlwXNabppB_a7kJjecmunLS6PBRZ36Ym-fz4CSThdUX_7kbPI1vFsmkN53d3iXDaW-FAQM9nC0JSTHJVBRTqBSSSFEtCcmWDFLEuOaMS6I5TT0AoIQ44inSGfNYjBHuBteHuytZiKrON7LeilLmYjKcin0PoIgQwtEr9OzVga3q8qXR1ol12dTGvycQ5gQiiiLmKX6g3vJCb9ubEIi9A2LvgGgdEEmySFqFfwEKYn-V</recordid><startdate>20200420</startdate><enddate>20200420</enddate><creator>Said‐Aizpuru, Olivier</creator><creator>Batista, Ana T. F.</creator><creator>Bouchy, Christophe</creator><creator>Petrazzuoli, Vittorio</creator><creator>Allain, Florent</creator><creator>Diehl, Fabrice</creator><creator>Farrusseng, David</creator><creator>Morfin, Franck</creator><creator>Joly, Jean‐François</creator><creator>Dandeu, Aurélie</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5347-6550</orcidid><orcidid>https://orcid.org/0000-0003-3272-708X</orcidid><orcidid>https://orcid.org/0000-0002-9093-4143</orcidid></search><sort><creationdate>20200420</creationdate><title>Non Monotonous Product Distribution Dependence on Pt/γ‐Al2O3−Cl Catalysts Formulation in n‐Heptane Reforming</title><author>Said‐Aizpuru, Olivier ; Batista, Ana T. F. ; Bouchy, Christophe ; Petrazzuoli, Vittorio ; Allain, Florent ; Diehl, Fabrice ; Farrusseng, David ; Morfin, Franck ; Joly, Jean‐François ; Dandeu, Aurélie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h3070-3fb44d34fc5861cc2a2c6ea44fb716279e979a4e96d58601a1359d2ef7c6e8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>bi-functional catalysis</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical Sciences</topic><topic>Crystallites</topic><topic>Environment and Society</topic><topic>Environmental Sciences</topic><topic>Heptanes</topic><topic>Hydrocracking</topic><topic>Hydrogenolysis</topic><topic>Isomerization</topic><topic>n-heptane reforming</topic><topic>Naphtha</topic><topic>Pt/γ-Al2O3−Cl</topic><topic>Reforming</topic><topic>Selectivity</topic><topic>selectivity descriptor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Said‐Aizpuru, Olivier</creatorcontrib><creatorcontrib>Batista, Ana T. F.</creatorcontrib><creatorcontrib>Bouchy, Christophe</creatorcontrib><creatorcontrib>Petrazzuoli, Vittorio</creatorcontrib><creatorcontrib>Allain, Florent</creatorcontrib><creatorcontrib>Diehl, Fabrice</creatorcontrib><creatorcontrib>Farrusseng, David</creatorcontrib><creatorcontrib>Morfin, Franck</creatorcontrib><creatorcontrib>Joly, Jean‐François</creatorcontrib><creatorcontrib>Dandeu, Aurélie</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Said‐Aizpuru, Olivier</au><au>Batista, Ana T. F.</au><au>Bouchy, Christophe</au><au>Petrazzuoli, Vittorio</au><au>Allain, Florent</au><au>Diehl, Fabrice</au><au>Farrusseng, David</au><au>Morfin, Franck</au><au>Joly, Jean‐François</au><au>Dandeu, Aurélie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non Monotonous Product Distribution Dependence on Pt/γ‐Al2O3−Cl Catalysts Formulation in n‐Heptane Reforming</atitle><jtitle>ChemCatChem</jtitle><date>2020-04-20</date><risdate>2020</risdate><volume>12</volume><issue>8</issue><spage>2262</spage><epage>2270</epage><pages>2262-2270</pages><issn>1867-3880</issn><issn>1867-3899</issn><eissn>1867-3899</eissn><abstract>The synthesis of 19 carefully selected Pt/γ‐Al2O3−Cl formulations was followed by high‐throughput catalytic testing in order to unravel the effect of an active phase formulation change on n‐heptane reforming performances. Pt/γ‐Al2O3−Cl catalysts were prepared with different Pt (0.3–1 %wt) and Cl (0.1–1.4 %wt) contents and using two γ‐Al2O3 supports so that both sites concentrations and sites locations at the crystallite surface vary among the catalyst pool. Catalytic tests were conducted in mild conditions for a comparison of catalysts in kinetic regime. Results show that Pt and Cl concentrations control the competition between hydroisomerisation, hydrogenolysis and hydrocracking pathways. Aromatisation, on the contrary, is poorly affected by formulation changes. Non‐monotonous trends linking Pt/Cl ratio to isomerisation selectivity are found for both γ‐Al2O3 supports. This study provides new insights for the description of bi‐functional transformations in catalytic naphtha reforming.
n‐Heptane reforming: Catalytic tests were carried on in order to unravel the effect of an active phase formulation change on n‐heptane reforming performances Results show that with Pt/γ‐Al2O3−Cl systems, Pt and Cl concentrations control the competition between hydroisomerisation, hydrogenolysis and hydrocracking pathways. Similar non‐monotonous trends linking Pt/Cl ratio to isomerisation selectivity are found for two γ‐Al2O3 supports. This study provides hints for the description of bi‐functional transformations in catalytic naphtha reforming.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.201902260</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5347-6550</orcidid><orcidid>https://orcid.org/0000-0003-3272-708X</orcidid><orcidid>https://orcid.org/0000-0002-9093-4143</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1867-3880 |
ispartof | ChemCatChem, 2020-04, Vol.12 (8), p.2262-2270 |
issn | 1867-3880 1867-3899 1867-3899 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02544492v1 |
source | Wiley-Blackwell Journals |
subjects | Aluminum oxide bi-functional catalysis Catalysis Catalysts Chemical Sciences Crystallites Environment and Society Environmental Sciences Heptanes Hydrocracking Hydrogenolysis Isomerization n-heptane reforming Naphtha Pt/γ-Al2O3−Cl Reforming Selectivity selectivity descriptor |
title | Non Monotonous Product Distribution Dependence on Pt/γ‐Al2O3−Cl Catalysts Formulation in n‐Heptane Reforming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T01%3A49%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%20Monotonous%20Product%20Distribution%20Dependence%20on%20Pt/%CE%B3%E2%80%90Al2O3%E2%88%92Cl%20Catalysts%20Formulation%20in%20n%E2%80%90Heptane%20Reforming&rft.jtitle=ChemCatChem&rft.au=Said%E2%80%90Aizpuru,%20Olivier&rft.date=2020-04-20&rft.volume=12&rft.issue=8&rft.spage=2262&rft.epage=2270&rft.pages=2262-2270&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201902260&rft_dat=%3Cproquest_hal_p%3E2394126257%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2394126257&rft_id=info:pmid/&rfr_iscdi=true |