Boosting a Reference Model-Based Controller Using Active Disturbance Rejection Principle for 3D Trajectory Tracking of Quadrotors: Experimental Validation

It is relevant to develop an adequate control algorithm for quadrotors that guarantees a good compromise robustness/ performance. This compromise should be ensured with or without external disturbances. In this paper, we investigate and apply a revisited formulation of a reference model-based contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & robotic systems 2020-11, Vol.100 (2), p.597-614
Hauptverfasser: Bouzid, Yasser, Zareb, Mehdi, Siguerdidjane, Houria, Guiatni, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 614
container_issue 2
container_start_page 597
container_title Journal of intelligent & robotic systems
container_volume 100
creator Bouzid, Yasser
Zareb, Mehdi
Siguerdidjane, Houria
Guiatni, Mohamed
description It is relevant to develop an adequate control algorithm for quadrotors that guarantees a good compromise robustness/ performance. This compromise should be ensured with or without external disturbances. In this paper, we investigate and apply a revisited formulation of a reference model-based control strategy by introducing a boosting mechanism. This mechanism uses an Extended State-based Observer (ESO) to estimate the uncertainties and variety of disturbances. The estimation is continually updated and rejected from the main control loop. The reinforcement principle is inspired from the popular Active Disturbance Rejection Control (ADRC) technique in order to enhance the robustness ability of a nonlinear reference model-based control strategy (i.e. Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC)). The obtained controller is augmented by an additional input, which is derived via sliding modes framework to handle the estimation errors and ensure asymptotic stability. This combination leads to promising results by improving the nominal control technique. The primary results are shown through numerical simulations and are confirmed, experimentally, with several scenarios.
doi_str_mv 10.1007/s10846-020-01182-4
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02543214v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724793105</galeid><sourcerecordid>A724793105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-9408593dd529ad4de50a2e5b7f926f994a54587d17b3d205090e68f344a712e43</originalsourceid><addsrcrecordid>eNp9kc9uEzEQxi0EEqHwApwsceKwZfwvu-aWpoUiBQFVy9Vy1uPgsLVTe1PRV-Fp8bIIbsiHsb75faNvNIS8ZHDKANo3hUEnlw1waICxjjfyEVkw1YoGJOjHZAGas9rWy6fkWSl7ANCd0gvy8yylMoa4o5ZeoceMsUf6MTkcmjNb0NF1imNOw4CZ3pQJXPVjuEd6Hsp4zFs78Ve4x6qmSD_nEPtwGJD6lKk4p9fZTr2UH6Zv_32akDz9crQupyqXt_TixwFzuMU42oF-tUNwdpr1nDzxdij44k89ITfvLq7Xl83m0_sP69Wm6aXqxkZLqJsI5xTX1kmHCixHtW295kuvtbSqcq1j7VY4Dgo04LLzQkrbMo5SnJDX89xvdjCHGsTmB5NsMJerjZk04EoKzuQ9q-yrmT3kdHfEMpp9OuZY4xkupZay1V1XqdOZ2tkBTYg-jXX1-hzehj5F9KHqq5ZXXDBQ1cBnQ59TKRn93xwMzHRgMx-4RgHz-8Bmyi1mU6lw3GH-l-U_rl_iJair</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449447988</pqid></control><display><type>article</type><title>Boosting a Reference Model-Based Controller Using Active Disturbance Rejection Principle for 3D Trajectory Tracking of Quadrotors: Experimental Validation</title><source>Springer Nature - Complete Springer Journals</source><creator>Bouzid, Yasser ; Zareb, Mehdi ; Siguerdidjane, Houria ; Guiatni, Mohamed</creator><creatorcontrib>Bouzid, Yasser ; Zareb, Mehdi ; Siguerdidjane, Houria ; Guiatni, Mohamed</creatorcontrib><description>It is relevant to develop an adequate control algorithm for quadrotors that guarantees a good compromise robustness/ performance. This compromise should be ensured with or without external disturbances. In this paper, we investigate and apply a revisited formulation of a reference model-based control strategy by introducing a boosting mechanism. This mechanism uses an Extended State-based Observer (ESO) to estimate the uncertainties and variety of disturbances. The estimation is continually updated and rejected from the main control loop. The reinforcement principle is inspired from the popular Active Disturbance Rejection Control (ADRC) technique in order to enhance the robustness ability of a nonlinear reference model-based control strategy (i.e. Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC)). The obtained controller is augmented by an additional input, which is derived via sliding modes framework to handle the estimation errors and ensure asymptotic stability. This combination leads to promising results by improving the nominal control technique. The primary results are shown through numerical simulations and are confirmed, experimentally, with several scenarios.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-020-01182-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Active control ; Algorithms ; Analysis ; Artificial Intelligence ; Automatic ; Control ; Control algorithms ; Control stability ; Control theory ; Controllers ; Damping ; Disturbances ; Electrical Engineering ; Engineering ; Engineering Sciences ; Mathematical models ; Mechanical Engineering ; Mechatronics ; Nonlinear control ; Numerical analysis ; Rejection ; Robotics ; Robustness (mathematics) ; Rotary wing aircraft ; Sliding mode control</subject><ispartof>Journal of intelligent &amp; robotic systems, 2020-11, Vol.100 (2), p.597-614</ispartof><rights>Springer Nature B.V. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Nature B.V. 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-9408593dd529ad4de50a2e5b7f926f994a54587d17b3d205090e68f344a712e43</citedby><cites>FETCH-LOGICAL-c458t-9408593dd529ad4de50a2e5b7f926f994a54587d17b3d205090e68f344a712e43</cites><orcidid>0000-0002-8400-9912 ; 0000-0002-6990-6463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-020-01182-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-020-01182-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.univ-grenoble-alpes.fr/hal-02543214$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouzid, Yasser</creatorcontrib><creatorcontrib>Zareb, Mehdi</creatorcontrib><creatorcontrib>Siguerdidjane, Houria</creatorcontrib><creatorcontrib>Guiatni, Mohamed</creatorcontrib><title>Boosting a Reference Model-Based Controller Using Active Disturbance Rejection Principle for 3D Trajectory Tracking of Quadrotors: Experimental Validation</title><title>Journal of intelligent &amp; robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>It is relevant to develop an adequate control algorithm for quadrotors that guarantees a good compromise robustness/ performance. This compromise should be ensured with or without external disturbances. In this paper, we investigate and apply a revisited formulation of a reference model-based control strategy by introducing a boosting mechanism. This mechanism uses an Extended State-based Observer (ESO) to estimate the uncertainties and variety of disturbances. The estimation is continually updated and rejected from the main control loop. The reinforcement principle is inspired from the popular Active Disturbance Rejection Control (ADRC) technique in order to enhance the robustness ability of a nonlinear reference model-based control strategy (i.e. Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC)). The obtained controller is augmented by an additional input, which is derived via sliding modes framework to handle the estimation errors and ensure asymptotic stability. This combination leads to promising results by improving the nominal control technique. The primary results are shown through numerical simulations and are confirmed, experimentally, with several scenarios.</description><subject>Active control</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Automatic</subject><subject>Control</subject><subject>Control algorithms</subject><subject>Control stability</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Damping</subject><subject>Disturbances</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Nonlinear control</subject><subject>Numerical analysis</subject><subject>Rejection</subject><subject>Robotics</subject><subject>Robustness (mathematics)</subject><subject>Rotary wing aircraft</subject><subject>Sliding mode control</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc9uEzEQxi0EEqHwApwsceKwZfwvu-aWpoUiBQFVy9Vy1uPgsLVTe1PRV-Fp8bIIbsiHsb75faNvNIS8ZHDKANo3hUEnlw1waICxjjfyEVkw1YoGJOjHZAGas9rWy6fkWSl7ANCd0gvy8yylMoa4o5ZeoceMsUf6MTkcmjNb0NF1imNOw4CZ3pQJXPVjuEd6Hsp4zFs78Ve4x6qmSD_nEPtwGJD6lKk4p9fZTr2UH6Zv_32akDz9crQupyqXt_TixwFzuMU42oF-tUNwdpr1nDzxdij44k89ITfvLq7Xl83m0_sP69Wm6aXqxkZLqJsI5xTX1kmHCixHtW295kuvtbSqcq1j7VY4Dgo04LLzQkrbMo5SnJDX89xvdjCHGsTmB5NsMJerjZk04EoKzuQ9q-yrmT3kdHfEMpp9OuZY4xkupZay1V1XqdOZ2tkBTYg-jXX1-hzehj5F9KHqq5ZXXDBQ1cBnQ59TKRn93xwMzHRgMx-4RgHz-8Bmyi1mU6lw3GH-l-U_rl_iJair</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Bouzid, Yasser</creator><creator>Zareb, Mehdi</creator><creator>Siguerdidjane, Houria</creator><creator>Guiatni, Mohamed</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8400-9912</orcidid><orcidid>https://orcid.org/0000-0002-6990-6463</orcidid></search><sort><creationdate>20201101</creationdate><title>Boosting a Reference Model-Based Controller Using Active Disturbance Rejection Principle for 3D Trajectory Tracking of Quadrotors: Experimental Validation</title><author>Bouzid, Yasser ; Zareb, Mehdi ; Siguerdidjane, Houria ; Guiatni, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-9408593dd529ad4de50a2e5b7f926f994a54587d17b3d205090e68f344a712e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active control</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Automatic</topic><topic>Control</topic><topic>Control algorithms</topic><topic>Control stability</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Damping</topic><topic>Disturbances</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Nonlinear control</topic><topic>Numerical analysis</topic><topic>Rejection</topic><topic>Robotics</topic><topic>Robustness (mathematics)</topic><topic>Rotary wing aircraft</topic><topic>Sliding mode control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouzid, Yasser</creatorcontrib><creatorcontrib>Zareb, Mehdi</creatorcontrib><creatorcontrib>Siguerdidjane, Houria</creatorcontrib><creatorcontrib>Guiatni, Mohamed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of intelligent &amp; robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouzid, Yasser</au><au>Zareb, Mehdi</au><au>Siguerdidjane, Houria</au><au>Guiatni, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting a Reference Model-Based Controller Using Active Disturbance Rejection Principle for 3D Trajectory Tracking of Quadrotors: Experimental Validation</atitle><jtitle>Journal of intelligent &amp; robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>100</volume><issue>2</issue><spage>597</spage><epage>614</epage><pages>597-614</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>It is relevant to develop an adequate control algorithm for quadrotors that guarantees a good compromise robustness/ performance. This compromise should be ensured with or without external disturbances. In this paper, we investigate and apply a revisited formulation of a reference model-based control strategy by introducing a boosting mechanism. This mechanism uses an Extended State-based Observer (ESO) to estimate the uncertainties and variety of disturbances. The estimation is continually updated and rejected from the main control loop. The reinforcement principle is inspired from the popular Active Disturbance Rejection Control (ADRC) technique in order to enhance the robustness ability of a nonlinear reference model-based control strategy (i.e. Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC)). The obtained controller is augmented by an additional input, which is derived via sliding modes framework to handle the estimation errors and ensure asymptotic stability. This combination leads to promising results by improving the nominal control technique. The primary results are shown through numerical simulations and are confirmed, experimentally, with several scenarios.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-020-01182-4</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8400-9912</orcidid><orcidid>https://orcid.org/0000-0002-6990-6463</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-0296
ispartof Journal of intelligent & robotic systems, 2020-11, Vol.100 (2), p.597-614
issn 0921-0296
1573-0409
language eng
recordid cdi_hal_primary_oai_HAL_hal_02543214v1
source Springer Nature - Complete Springer Journals
subjects Active control
Algorithms
Analysis
Artificial Intelligence
Automatic
Control
Control algorithms
Control stability
Control theory
Controllers
Damping
Disturbances
Electrical Engineering
Engineering
Engineering Sciences
Mathematical models
Mechanical Engineering
Mechatronics
Nonlinear control
Numerical analysis
Rejection
Robotics
Robustness (mathematics)
Rotary wing aircraft
Sliding mode control
title Boosting a Reference Model-Based Controller Using Active Disturbance Rejection Principle for 3D Trajectory Tracking of Quadrotors: Experimental Validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20a%20Reference%20Model-Based%20Controller%20Using%20Active%20Disturbance%20Rejection%20Principle%20for%203D%20Trajectory%20Tracking%20of%20Quadrotors:%20Experimental%20Validation&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Bouzid,%20Yasser&rft.date=2020-11-01&rft.volume=100&rft.issue=2&rft.spage=597&rft.epage=614&rft.pages=597-614&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-020-01182-4&rft_dat=%3Cgale_hal_p%3EA724793105%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449447988&rft_id=info:pmid/&rft_galeid=A724793105&rfr_iscdi=true