Boosting a Reference Model-Based Controller Using Active Disturbance Rejection Principle for 3D Trajectory Tracking of Quadrotors: Experimental Validation
It is relevant to develop an adequate control algorithm for quadrotors that guarantees a good compromise robustness/ performance. This compromise should be ensured with or without external disturbances. In this paper, we investigate and apply a revisited formulation of a reference model-based contro...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2020-11, Vol.100 (2), p.597-614 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 614 |
---|---|
container_issue | 2 |
container_start_page | 597 |
container_title | Journal of intelligent & robotic systems |
container_volume | 100 |
creator | Bouzid, Yasser Zareb, Mehdi Siguerdidjane, Houria Guiatni, Mohamed |
description | It is relevant to develop an adequate control algorithm for quadrotors that guarantees a good compromise robustness/ performance. This compromise should be ensured with or without external disturbances. In this paper, we investigate and apply a revisited formulation of a reference model-based control strategy by introducing a boosting mechanism. This mechanism uses an Extended State-based Observer (ESO) to estimate the uncertainties and variety of disturbances. The estimation is continually updated and rejected from the main control loop. The reinforcement principle is inspired from the popular Active Disturbance Rejection Control (ADRC) technique in order to enhance the robustness ability of a nonlinear reference model-based control strategy (i.e. Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC)). The obtained controller is augmented by an additional input, which is derived via sliding modes framework to handle the estimation errors and ensure asymptotic stability. This combination leads to promising results by improving the nominal control technique. The primary results are shown through numerical simulations and are confirmed, experimentally, with several scenarios. |
doi_str_mv | 10.1007/s10846-020-01182-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02543214v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724793105</galeid><sourcerecordid>A724793105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-9408593dd529ad4de50a2e5b7f926f994a54587d17b3d205090e68f344a712e43</originalsourceid><addsrcrecordid>eNp9kc9uEzEQxi0EEqHwApwsceKwZfwvu-aWpoUiBQFVy9Vy1uPgsLVTe1PRV-Fp8bIIbsiHsb75faNvNIS8ZHDKANo3hUEnlw1waICxjjfyEVkw1YoGJOjHZAGas9rWy6fkWSl7ANCd0gvy8yylMoa4o5ZeoceMsUf6MTkcmjNb0NF1imNOw4CZ3pQJXPVjuEd6Hsp4zFs78Ve4x6qmSD_nEPtwGJD6lKk4p9fZTr2UH6Zv_32akDz9crQupyqXt_TixwFzuMU42oF-tUNwdpr1nDzxdij44k89ITfvLq7Xl83m0_sP69Wm6aXqxkZLqJsI5xTX1kmHCixHtW295kuvtbSqcq1j7VY4Dgo04LLzQkrbMo5SnJDX89xvdjCHGsTmB5NsMJerjZk04EoKzuQ9q-yrmT3kdHfEMpp9OuZY4xkupZay1V1XqdOZ2tkBTYg-jXX1-hzehj5F9KHqq5ZXXDBQ1cBnQ59TKRn93xwMzHRgMx-4RgHz-8Bmyi1mU6lw3GH-l-U_rl_iJair</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2449447988</pqid></control><display><type>article</type><title>Boosting a Reference Model-Based Controller Using Active Disturbance Rejection Principle for 3D Trajectory Tracking of Quadrotors: Experimental Validation</title><source>Springer Nature - Complete Springer Journals</source><creator>Bouzid, Yasser ; Zareb, Mehdi ; Siguerdidjane, Houria ; Guiatni, Mohamed</creator><creatorcontrib>Bouzid, Yasser ; Zareb, Mehdi ; Siguerdidjane, Houria ; Guiatni, Mohamed</creatorcontrib><description>It is relevant to develop an adequate control algorithm for quadrotors that guarantees a good compromise robustness/ performance. This compromise should be ensured with or without external disturbances. In this paper, we investigate and apply a revisited formulation of a reference model-based control strategy by introducing a boosting mechanism. This mechanism uses an Extended State-based Observer (ESO) to estimate the uncertainties and variety of disturbances. The estimation is continually updated and rejected from the main control loop. The reinforcement principle is inspired from the popular Active Disturbance Rejection Control (ADRC) technique in order to enhance the robustness ability of a nonlinear reference model-based control strategy (i.e. Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC)). The obtained controller is augmented by an additional input, which is derived via sliding modes framework to handle the estimation errors and ensure asymptotic stability. This combination leads to promising results by improving the nominal control technique. The primary results are shown through numerical simulations and are confirmed, experimentally, with several scenarios.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-020-01182-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Active control ; Algorithms ; Analysis ; Artificial Intelligence ; Automatic ; Control ; Control algorithms ; Control stability ; Control theory ; Controllers ; Damping ; Disturbances ; Electrical Engineering ; Engineering ; Engineering Sciences ; Mathematical models ; Mechanical Engineering ; Mechatronics ; Nonlinear control ; Numerical analysis ; Rejection ; Robotics ; Robustness (mathematics) ; Rotary wing aircraft ; Sliding mode control</subject><ispartof>Journal of intelligent & robotic systems, 2020-11, Vol.100 (2), p.597-614</ispartof><rights>Springer Nature B.V. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Nature B.V. 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-9408593dd529ad4de50a2e5b7f926f994a54587d17b3d205090e68f344a712e43</citedby><cites>FETCH-LOGICAL-c458t-9408593dd529ad4de50a2e5b7f926f994a54587d17b3d205090e68f344a712e43</cites><orcidid>0000-0002-8400-9912 ; 0000-0002-6990-6463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-020-01182-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-020-01182-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.univ-grenoble-alpes.fr/hal-02543214$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bouzid, Yasser</creatorcontrib><creatorcontrib>Zareb, Mehdi</creatorcontrib><creatorcontrib>Siguerdidjane, Houria</creatorcontrib><creatorcontrib>Guiatni, Mohamed</creatorcontrib><title>Boosting a Reference Model-Based Controller Using Active Disturbance Rejection Principle for 3D Trajectory Tracking of Quadrotors: Experimental Validation</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>It is relevant to develop an adequate control algorithm for quadrotors that guarantees a good compromise robustness/ performance. This compromise should be ensured with or without external disturbances. In this paper, we investigate and apply a revisited formulation of a reference model-based control strategy by introducing a boosting mechanism. This mechanism uses an Extended State-based Observer (ESO) to estimate the uncertainties and variety of disturbances. The estimation is continually updated and rejected from the main control loop. The reinforcement principle is inspired from the popular Active Disturbance Rejection Control (ADRC) technique in order to enhance the robustness ability of a nonlinear reference model-based control strategy (i.e. Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC)). The obtained controller is augmented by an additional input, which is derived via sliding modes framework to handle the estimation errors and ensure asymptotic stability. This combination leads to promising results by improving the nominal control technique. The primary results are shown through numerical simulations and are confirmed, experimentally, with several scenarios.</description><subject>Active control</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Automatic</subject><subject>Control</subject><subject>Control algorithms</subject><subject>Control stability</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Damping</subject><subject>Disturbances</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Mathematical models</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Nonlinear control</subject><subject>Numerical analysis</subject><subject>Rejection</subject><subject>Robotics</subject><subject>Robustness (mathematics)</subject><subject>Rotary wing aircraft</subject><subject>Sliding mode control</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc9uEzEQxi0EEqHwApwsceKwZfwvu-aWpoUiBQFVy9Vy1uPgsLVTe1PRV-Fp8bIIbsiHsb75faNvNIS8ZHDKANo3hUEnlw1waICxjjfyEVkw1YoGJOjHZAGas9rWy6fkWSl7ANCd0gvy8yylMoa4o5ZeoceMsUf6MTkcmjNb0NF1imNOw4CZ3pQJXPVjuEd6Hsp4zFs78Ve4x6qmSD_nEPtwGJD6lKk4p9fZTr2UH6Zv_32akDz9crQupyqXt_TixwFzuMU42oF-tUNwdpr1nDzxdij44k89ITfvLq7Xl83m0_sP69Wm6aXqxkZLqJsI5xTX1kmHCixHtW295kuvtbSqcq1j7VY4Dgo04LLzQkrbMo5SnJDX89xvdjCHGsTmB5NsMJerjZk04EoKzuQ9q-yrmT3kdHfEMpp9OuZY4xkupZay1V1XqdOZ2tkBTYg-jXX1-hzehj5F9KHqq5ZXXDBQ1cBnQ59TKRn93xwMzHRgMx-4RgHz-8Bmyi1mU6lw3GH-l-U_rl_iJair</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Bouzid, Yasser</creator><creator>Zareb, Mehdi</creator><creator>Siguerdidjane, Houria</creator><creator>Guiatni, Mohamed</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8400-9912</orcidid><orcidid>https://orcid.org/0000-0002-6990-6463</orcidid></search><sort><creationdate>20201101</creationdate><title>Boosting a Reference Model-Based Controller Using Active Disturbance Rejection Principle for 3D Trajectory Tracking of Quadrotors: Experimental Validation</title><author>Bouzid, Yasser ; Zareb, Mehdi ; Siguerdidjane, Houria ; Guiatni, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-9408593dd529ad4de50a2e5b7f926f994a54587d17b3d205090e68f344a712e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Active control</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Automatic</topic><topic>Control</topic><topic>Control algorithms</topic><topic>Control stability</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Damping</topic><topic>Disturbances</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Mathematical models</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Nonlinear control</topic><topic>Numerical analysis</topic><topic>Rejection</topic><topic>Robotics</topic><topic>Robustness (mathematics)</topic><topic>Rotary wing aircraft</topic><topic>Sliding mode control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bouzid, Yasser</creatorcontrib><creatorcontrib>Zareb, Mehdi</creatorcontrib><creatorcontrib>Siguerdidjane, Houria</creatorcontrib><creatorcontrib>Guiatni, Mohamed</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouzid, Yasser</au><au>Zareb, Mehdi</au><au>Siguerdidjane, Houria</au><au>Guiatni, Mohamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting a Reference Model-Based Controller Using Active Disturbance Rejection Principle for 3D Trajectory Tracking of Quadrotors: Experimental Validation</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>100</volume><issue>2</issue><spage>597</spage><epage>614</epage><pages>597-614</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>It is relevant to develop an adequate control algorithm for quadrotors that guarantees a good compromise robustness/ performance. This compromise should be ensured with or without external disturbances. In this paper, we investigate and apply a revisited formulation of a reference model-based control strategy by introducing a boosting mechanism. This mechanism uses an Extended State-based Observer (ESO) to estimate the uncertainties and variety of disturbances. The estimation is continually updated and rejected from the main control loop. The reinforcement principle is inspired from the popular Active Disturbance Rejection Control (ADRC) technique in order to enhance the robustness ability of a nonlinear reference model-based control strategy (i.e. Interconnection and Damping Assignment-Passivity Based Control (IDA-PBC)). The obtained controller is augmented by an additional input, which is derived via sliding modes framework to handle the estimation errors and ensure asymptotic stability. This combination leads to promising results by improving the nominal control technique. The primary results are shown through numerical simulations and are confirmed, experimentally, with several scenarios.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-020-01182-4</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8400-9912</orcidid><orcidid>https://orcid.org/0000-0002-6990-6463</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2020-11, Vol.100 (2), p.597-614 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02543214v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Active control Algorithms Analysis Artificial Intelligence Automatic Control Control algorithms Control stability Control theory Controllers Damping Disturbances Electrical Engineering Engineering Engineering Sciences Mathematical models Mechanical Engineering Mechatronics Nonlinear control Numerical analysis Rejection Robotics Robustness (mathematics) Rotary wing aircraft Sliding mode control |
title | Boosting a Reference Model-Based Controller Using Active Disturbance Rejection Principle for 3D Trajectory Tracking of Quadrotors: Experimental Validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A01%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20a%20Reference%20Model-Based%20Controller%20Using%20Active%20Disturbance%20Rejection%20Principle%20for%203D%20Trajectory%20Tracking%20of%20Quadrotors:%20Experimental%20Validation&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Bouzid,%20Yasser&rft.date=2020-11-01&rft.volume=100&rft.issue=2&rft.spage=597&rft.epage=614&rft.pages=597-614&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-020-01182-4&rft_dat=%3Cgale_hal_p%3EA724793105%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2449447988&rft_id=info:pmid/&rft_galeid=A724793105&rfr_iscdi=true |